3,759 research outputs found

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Cognitive and Energy Harvesting-Based D2D Communication in Cellular Networks: Stochastic Geometry Modeling and Analysis

    Full text link
    While cognitive radio enables spectrum-efficient wireless communication, radio frequency (RF) energy harvesting from ambient interference is an enabler for energy-efficient wireless communication. In this paper, we model and analyze cognitive and energy harvesting-based D2D communication in cellular networks. The cognitive D2D transmitters harvest energy from ambient interference and use one of the channels allocated to cellular users (in uplink or downlink), which is referred to as the D2D channel, to communicate with the corresponding receivers. We investigate two spectrum access policies for cellular communication in the uplink or downlink, namely, random spectrum access (RSA) policy and prioritized spectrum access (PSA) policy. In RSA, any of the available channels including the channel used by the D2D transmitters can be selected randomly for cellular communication, while in PSA the D2D channel is used only when all of the other channels are occupied. A D2D transmitter can communicate successfully with its receiver only when it harvests enough energy to perform channel inversion toward the receiver, the D2D channel is free, and the SINR\mathsf{SINR} at the receiver is above the required threshold; otherwise, an outage occurs for the D2D communication. We use tools from stochastic geometry to evaluate the performance of the proposed communication system model with general path-loss exponent in terms of outage probability for D2D and cellular users. We show that energy harvesting can be a reliable alternative to power cognitive D2D transmitters while achieving acceptable performance. Under the same SINR\mathsf{SINR} outage requirements as for the non-cognitive case, cognitive channel access improves the outage probability for D2D users for both the spectrum access policies.Comment: IEEE Transactions on Communications, to appea

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure
    corecore