2,237 research outputs found

    Hybrid Beamforming via the Kronecker Decomposition for the Millimeter-Wave Massive MIMO Systems

    Get PDF
    Despite its promising performance gain, the realization of mmWave massive MIMO still faces several practical challenges. In particular, implementing massive MIMO in the digital domain requires hundreds of RF chains matching the number of antennas. Furthermore, designing these components to operate at the mmWave frequencies is challenging and costly. These motivated the recent development of hybrid-beamforming where MIMO processing is divided for separate implementation in the analog and digital domains, called the analog and digital beamforming, respectively. Analog beamforming using a phase array introduces uni-modulus constraints on the beamforming coefficients, rendering the conventional MIMO techniques unsuitable and call for new designs. In this paper, we present a systematic design framework for hybrid beamforming for multi-cell multiuser massive MIMO systems over mmWave channels characterized by sparse propagation paths. The framework relies on the decomposition of analog beamforming vectors and path observation vectors into Kronecker products of factors being uni-modulus vectors. Exploiting properties of Kronecker mixed products, different factors of the analog beamformer are designed for either nulling interference paths or coherently combining data paths. Furthermore, a channel estimation scheme is designed for enabling the proposed hybrid beamforming. The scheme estimates the AoA of data and interference paths by analog beam scanning and data-path gains by analog beam steering. The performance of the channel estimation scheme is analyzed. In particular, the AoA spectrum resulting from beam scanning, which displays the magnitude distribution of paths over the AoA range, is derived in closed-form. It is shown that the inter-cell interference level diminishes inversely with the array size, the square root of pilot sequence length and the spatial separation between paths.Comment: Submitted to IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Networks, minor revisio

    Non-Orthogonal Multiple Access for mmWave Drones with Multi-Antenna Transmission

    Full text link
    Unmanned aerial vehicles (UAVs) can be deployed as aerial base stations (BSs) for rapid establishment of communication networks during temporary events and after disasters. Since UAV-BSs are low power nodes, achieving high spectral and energy efficiency are of paramount importance. In this paper, we introduce non-orthogonal multiple access (NOMA) transmission for millimeter-wave (mmWave) drones serving as flying BSs at a large stadium potentially with several hundreds or thousands of mobile users. In particular, we make use of multi-antenna techniques specifically taking into consideration the physical constraints of the antenna array, to generate directional beams. Multiple users are then served within the same beam employing NOMA transmission. If the UAV beam can not cover entire region where users are distributed, we introduce beam scanning to maximize outage sum rates. The simulation results reveal that, with NOMA transmission the spectral efficiency of the UAV based communication can be greatly enhanced compared to orthogonal multiple access (OMA) transmission. Further, the analysis shows that there is an optimum transmit power value for NOMA beyond which outage sum rates do not improve further

    Phase only transmit beamforming for spectrum sharing microwave systems

    Get PDF
    This paper deals with the problem of phase-only transmit beamforming in spectrum sharing microwave systems. In contrast to sub-6 GHz schemes, general microwave systems require a large number of antennas due to its huge path loss. As a consequence, digital beamforming needs a large number of computational resources compared to analog beamforming, which only needs a single radio-frequency chain, results the less computational demanding solution. Analog schemes are usually composed by a phase shifter network whose elements transmit at a certain fixed power so that the system designer shall compute the phase values for each element given a set of directions. This approach leads to non-convex quadratic problems where the traditional semidefinite relaxation fails to deliver satisfactory outcomes. In order to solve this, we propose a nonsmooth method that behaves well in several scenarios. Numerical evaluations in different spectrum sharing scenarios, which show the performance of our method, are provided.Peer ReviewedPostprint (author's final draft

    Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity

    Get PDF
    This paper introduces innovative SAR system concepts for the acquisition of high resolution radar images with wide swath coverage from spaceborne platforms. The new concepts rely on the combination of advanced multi-channel SAR front-end architectures with novel operational modes. The architectures differ regarding their implementation complexity and it is shown that even a low number of channels is already well suited to significantly improve the imaging performance and to overcome fundamental limitations inherent to classical SAR systems. The more advanced concepts employ a multidimensional encoding of the transmitted waveforms to further improve the performance and to enable a new class of hybrid SAR imaging modes that are well suited to satisfy hitherto incompatible user requirements for frequent monitoring and detailed mapping. Implementation specific issues will be discussed and examples demonstrate the potential of the new techniques for different remote sensing applications
    • 

    corecore