35,821 research outputs found

    Distributed Transactions: Dissecting the Nightmare

    Get PDF
    Many distributed storage systems are transactional and a lot of work has been devoted to optimizing their performance, especially the performance of read-only transactions that are considered the most frequent in practice. Yet, the results obtained so far are rather disappointing, and some of the design decisions seem contrived. This paper contributes to explaining this state of affairs by proving intrinsic limitations of transactional storage systems, even those that need not ensure strong consistency but only causality. We first consider general storage systems where some transactions are read-only and some also involve write operations. We show that even read-only transactions cannot be "fast": their operations cannot be executed within one round-trip message exchange between a client seeking an object and the server storing it. We then consider systems (as sometimes implemented today) where all transactions are read-only, i.e., updates are performed as individual operations outside transactions. In this case, read-only transactions can indeed be "fast", but we prove that they need to be "visible". They induce inherent updates on the servers, which in turn impact their overall performance

    Distributed Transactions: Dissecting the Nightmare

    Get PDF
    Many distributed storage systems are transactional and a lot of work has been devoted to optimizing their performance, especially the performance of read-only transactions that are considered the most frequent in practice. Yet, the results obtained so far are rather disappointing, and some of the design decisions seem contrived. This paper contributes to explaining this state of affairs by proving intrinsic limitations of transactional storage systems, even those that need not ensure strong consistency but only causality. We first consider general storage systems where some transactions are read-only and some also involve write operations. We show that even read-only transactions cannot be "fast": their operations cannot be executed within one round-trip message exchange between a client seeking an object and the server storing it. We then consider systems (as sometimes implemented today) where all transactions are read-only, i.e., updates are performed as individual operations outside transactions. In this case, read-only transactions can indeed be "fast", but we prove that they need to be "visible". They induce inherent updates on the servers, which in turn impact their overall performance

    A Template for Implementing Fast Lock-free Trees Using HTM

    Full text link
    Algorithms that use hardware transactional memory (HTM) must provide a software-only fallback path to guarantee progress. The design of the fallback path can have a profound impact on performance. If the fallback path is allowed to run concurrently with hardware transactions, then hardware transactions must be instrumented, adding significant overhead. Otherwise, hardware transactions must wait for any processes on the fallback path, causing concurrency bottlenecks, or move to the fallback path. We introduce an approach that combines the best of both worlds. The key idea is to use three execution paths: an HTM fast path, an HTM middle path, and a software fallback path, such that the middle path can run concurrently with each of the other two. The fast path and fallback path do not run concurrently, so the fast path incurs no instrumentation overhead. Furthermore, fast path transactions can move to the middle path instead of waiting or moving to the software path. We demonstrate our approach by producing an accelerated version of the tree update template of Brown et al., which can be used to implement fast lock-free data structures based on down-trees. We used the accelerated template to implement two lock-free trees: a binary search tree (BST), and an (a,b)-tree (a generalization of a B-tree). Experiments show that, with 72 concurrent processes, our accelerated (a,b)-tree performs between 4.0x and 4.2x as many operations per second as an implementation obtained using the original tree update template

    Cache Serializability: Reducing Inconsistency in Edge Transactions

    Full text link
    Read-only caches are widely used in cloud infrastructures to reduce access latency and load on backend databases. Operators view coherent caches as impractical at genuinely large scale and many client-facing caches are updated in an asynchronous manner with best-effort pipelines. Existing solutions that support cache consistency are inapplicable to this scenario since they require a round trip to the database on every cache transaction. Existing incoherent cache technologies are oblivious to transactional data access, even if the backend database supports transactions. We propose T-Cache, a novel caching policy for read-only transactions in which inconsistency is tolerable (won't cause safety violations) but undesirable (has a cost). T-Cache improves cache consistency despite asynchronous and unreliable communication between the cache and the database. We define cache-serializability, a variant of serializability that is suitable for incoherent caches, and prove that with unbounded resources T-Cache implements this new specification. With limited resources, T-Cache allows the system manager to choose a trade-off between performance and consistency. Our evaluation shows that T-Cache detects many inconsistencies with only nominal overhead. We use synthetic workloads to demonstrate the efficacy of T-Cache when data accesses are clustered and its adaptive reaction to workload changes. With workloads based on the real-world topologies, T-Cache detects 43-70% of the inconsistencies and increases the rate of consistent transactions by 33-58%.Comment: Ittay Eyal, Ken Birman, Robbert van Renesse, "Cache Serializability: Reducing Inconsistency in Edge Transactions," Distributed Computing Systems (ICDCS), IEEE 35th International Conference on, June~29 2015--July~2 201

    Inherent Limitations of Hybrid Transactional Memory

    Full text link
    Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort, nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the fundamental limitations of building a HyTM with nontrivial concurrency between hardware and software transactions are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses, and allows us to formally quantify and analyze the amount of overhead (instrumentation) of a HyTM scheme. We prove the following: (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for weak progress guarantees, and (2) under reasonable assumptions, in any opaque progressive HyTM, a hardware transaction must incur instrumentation costs linear in the size of its data set. We further provide two upper bound implementations whose instrumentation costs are optimal with respect to their progress guarantees. In sum, this paper captures for the first time an inherent trade-off between the degree of concurrency a HyTM provides between hardware and software transactions, and the amount of instrumentation overhead the implementation must incur
    • …
    corecore