17,893 research outputs found

    Distributed Storage Allocations for Optimal Delay

    Full text link
    We examine the problem of creating an encoded distributed storage representation of a data object for a network of mobile storage nodes so as to achieve the optimal recovery delay. A source node creates a single data object and disseminates an encoded representation of it to other nodes for storage, subject to a given total storage budget. A data collector node subsequently attempts to recover the original data object by contacting other nodes and accessing the data stored in them. By using an appropriate code, successful recovery is achieved when the total amount of data accessed is at least the size of the original data object. The goal is to find an allocation of the given budget over the nodes that optimizes the recovery delay incurred by the data collector; two objectives are considered: (i) maximization of the probability of successful recovery by a given deadline, and (ii) minimization of the expected recovery delay. We solve the problem completely for the second objective in the case of symmetric allocations (in which all nonempty nodes store the same amount of data), and show that the optimal symmetric allocation for the two objectives can be quite different. A simple data dissemination and storage protocol for a mobile delay-tolerant network is evaluated under various scenarios via simulations. Our results show that the choice of storage allocation can have a significant impact on the recovery delay performance, and that coding may or may not be beneficial depending on the circumstances.Comment: Extended version of an IEEE ISIT 2011 paper. 10 pages, 4 figure

    Symmetric Allocations for Distributed Storage

    Full text link
    We consider the problem of optimally allocating a given total storage budget in a distributed storage system. A source has a data object which it can code and store over a set of storage nodes; it is allowed to store any amount of coded data in each node, as long as the total amount of storage used does not exceed the given budget. A data collector subsequently attempts to recover the original data object by accessing each of the nodes independently with some constant probability. By using an appropriate code, successful recovery occurs when the total amount of data in the accessed nodes is at least the size of the original data object. The goal is to find an optimal storage allocation that maximizes the probability of successful recovery. This optimization problem is challenging because of its discrete nature and nonconvexity, despite its simple formulation. Symmetric allocations (in which all nonempty nodes store the same amount of data), though intuitive, may be suboptimal; the problem is nontrivial even if we optimize over only symmetric allocations. Our main result shows that the symmetric allocation that spreads the budget maximally over all nodes is asymptotically optimal in a regime of interest. Specifically, we derive an upper bound for the suboptimality of this allocation and show that the performance gap vanishes asymptotically in the specified regime. Further, we explicitly find the optimal symmetric allocation for a variety of cases. Our results can be applied to distributed storage systems and other problems dealing with reliability under uncertainty, including delay tolerant networks (DTNs) and content delivery networks (CDNs).Comment: 7 pages, 3 figures, extended version of an IEEE GLOBECOM 2010 pape

    Derandomized Distributed Multi-resource Allocation with Little Communication Overhead

    Full text link
    We study a class of distributed optimization problems for multiple shared resource allocation in Internet-connected devices. We propose a derandomized version of an existing stochastic additive-increase and multiplicative-decrease (AIMD) algorithm. The proposed solution uses one bit feedback signal for each resource between the system and the Internet-connected devices and does not require inter-device communication. Additionally, the Internet-connected devices do not compromise their privacy and the solution does not dependent on the number of participating devices. In the system, each Internet-connected device has private cost functions which are strictly convex, twice continuously differentiable and increasing. We show empirically that the long-term average allocations of multiple shared resources converge to optimal allocations and the system achieves minimum social cost. Furthermore, we show that the proposed derandomized AIMD algorithm converges faster than the stochastic AIMD algorithm and both the approaches provide approximately same solutions
    • …
    corecore