3 research outputs found

    A Hybrid based Distributed Slot Scheduling Approach for WSN MAC

    Get PDF
    In Wireless Sensor Networks(WSNs), collision handling during transmission of data is an important challenge. MAC protocol plays a vital role in handling those collisions. Among different types of MAC protocols, schedule based MAC protocol is one where a valid schedule is prepared to handle the collision. The existing schedule based MAC protocols focus on preparing either a feasible schedule or an optimal schedule. In order to satisfy both feasibility as well as optimality feature, in this paper, we proposed a hybrid approach for slot scheduling that prepares a feasible schedule in a distributed manner and at the same time reduces the number of slots in the feasible schedule to achieve optimality. In this paper, we named this as Hybrid based Distributed Slot Scheduling (HDSS) approach. The proposed HDSS algorithm initially prepares a feasible schedule which is further tuned in quick time to prepare a valid schedule with a reduced number of slots. The reduction of the number of slots in the schedule improves the efficiency of data transmission in terms of latency. The simulation results show that the HDSS algorithm outperforms RD-TDMA with respect to both the number of slots allotted for a feasible schedule as well as the data transmission latency

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Channel Access in Wireless Networks: Protocol Design of Energy-Aware Schemes for the IoT and Analysis of Existing Technologies

    Get PDF
    The design of channel access policies has been an object of study since the deployment of the first wireless networks, as the Medium Access Control (MAC) layer is responsible for coordinating transmissions to a shared channel and plays a key role in the network performance. While the original target was the system throughput, over the years the focus switched to communication latency, Quality of Service (QoS) guarantees, energy consumption, spectrum efficiency, and any combination of such goals. The basic mechanisms to use a shared channel, such as ALOHA, TDMA- and FDMA-based policies, have been introduced decades ago. Nonetheless, the continuous evolution of wireless networks and the emergence of new communication paradigms demand the development of new strategies to adapt and optimize the standard approaches so as to satisfy the requirements of applications and devices. This thesis proposes several channel access schemes for novel wireless technologies, in particular Internet of Things (IoT) networks, the Long-Term Evolution (LTE) cellular standard, and mmWave communication with the IEEE802.11ad standard. The first part of the thesis concerns energy-aware channel access policies for IoT networks, which typically include several battery-powered sensors. In scenarios with energy restrictions, traditional protocols that do not consider the energy consumption may lead to the premature death of the network and unreliable performance expectations. The proposed schemes show the importance of accurately characterizing all the sources of energy consumption (and inflow, in the case of energy harvesting), which need to be included in the protocol design. In particular, the schemes presented in this thesis exploit data processing and compression techniques to trade off QoS for lifetime. We investigate contention-free and contention-based chanel access policies for different scenarios and application requirements. While the energy-aware schemes proposed for IoT networks are based on a clean-slate approach that is agnostic of the communication technology used, the second part of the thesis is focused on the LTE and IEEE802.11ad standards. As regards LTE, the study proposed in this thesis shows how to use machine-learning techniques to infer the collision multiplicity in the channel access phase, information that can be used to understand when the network is congested and improve the contention resolution mechanism. This is especially useful for massive access scenarios; in the last years, in fact, the research community has been investigating on the use of LTE for Machine-Type Communication (MTC). As regards the standard IEEE802.11ad, instead, it provides a hybrid MAC layer with contention-based and contention-free scheduled allocations, and a dynamic channel time allocation mechanism built on top of such schedule. Although this hybrid scheme is expected to meet heterogeneous requirements, it is still not clear how to develop a schedule based on the various traffic flows and their demands. A mathematical model is necessary to understand the performance and limits of the possible types of allocations and guide the scheduling process. In this thesis, we propose a model for the contention-based access periods which is aware of the interleaving of the available channel time with contention-free allocations
    corecore