8 research outputs found

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Embedding simulation technologies in business processes.

    Get PDF
    The need to fully integrate simulation as a daily tool has been subject to much attention over the past few years, however little research has previously contributed to this area. This study examines the development of systematic guidelines to enable companies to strategically implement simulation as a mainstream technology within their businesses.An extensive review of the literature was conducted in order to investigate the reasons behind the limited use of simulation and to establish the failure and success factors of companies implementing new technology. The importance of knowledge management in developing simulation technology was also investigated. Additionally, a questionnaire survey was conducted to examine the ways in which simulation technology has been used and developed within different companies. Furthermore, a case study was conducted in order to understand and investigate the processes of implementing simulation in a real organisation.Subsequently, an easy-to-follow framework for enabling companies to embed simulation technologies into their business processes was developed. This framework comprises five key stages, namely: Foundation, Introduction, Infrastructure,Deployment and Embedding. Each stage provides a best practice approach to guide companies in achieving every objective of that stage. Adjustments to the framework were made in the validation and reliability section to reduce any limitations.In creating a relevant and workable framework, this study has contributed significantly to the research gap established within existing simulation integration studies

    A grid computing framework for commercial simulation packages

    Get PDF
    An increased need for collaborative research among different organizations, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users non-trivial access to geographically dispersed computing resources (processors, storage, applications, data, instruments, etc.) that are administered in multiple computer domains. The term grid computing or grids is popularly used to refer to such distributed systems. A broader definition of grid computing includes the use of computing resources within an organization for running organization-specific applications. This research is in the context of using grid computing within an enterprise to maximize the use of available hardware and software resources for processing enterprise applications. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by simulation practitioners using Windows-based commercially available simulation packages to model simulations in industry. These packages are commonly referred to as Commercial Off-The-Shelf (COTS) Simulation Packages (CSPs). The study identifies several higher level grid services that could be potentially used to support the practise of simulation in industry. It proposes a grid computing framework to investigate these services in the context of CSP-based simulations. This framework is called the CSP-Grid Computing (CSP-GC) Framework. Each identified higher level grid service in this framework is referred to as a CSP-specific service. A total of six case studies are presented to experimentally evaluate how grid computing technologies can be used together with unmodified simulation packages to support some of the CSP-specific services. The contribution of this thesis is the CSP-GC framework that identifies how simulation practise in industry may benefit from the use of grid technology. A further contribution is the recognition of specific grid computing software (grid middleware) that can possibly be used together with existing CSPs to provide grid support. With its focus on end-users and end-user tools, it is intended that this research will encourage wider adoption of grid computing in the workplace and that simulation users will derive benefit from using this technology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Distributed simulation and simulation practice

    No full text
    The possibilities of distributed simulation have been discussed for well over a decade, yet there is only limited evidence of its implementation, particularly within industry. The reasons for this are discussed by identifying the potential applications of distributed simulation and linking these to the ways in which simulation is practiced. The extent to which distributed simulation is a demand led or technology led innovation is discussed. A possible contradiction between distributed simulation and good modeling practice is also identified, that is, the ability to develop large/complex models against the recommendation to develop simple models. This leads to three conclusions: not everyone needs distributed simulation, distributed simulation is both demand and technology led, and the possibilities of distributed simulation are both beneficial and dangerous to modeling practice
    corecore