76 research outputs found

    Event-based multi-objective filtering for multi-rate time-varying systems with random sensor saturation

    Get PDF
    summary:This paper focuses on the multi-objective filtering of multirate time-varying systems with random sensor saturations, where both the variance-constrained index and the H∞H_\infty index are employed to evaluate the filtering performance. According to address issues, the high-frequency period of the internal state of the system is nondestructively converted to the low-frequency period, which determined by the measurement devices. Then the saturated output of multiple sensors is modeled as a sector bounded nonlinearity. At the same time, in order to reduce the communication frequency between sensors and filters, a communication scheduling rule is designed by the utilization of an event-triggered mechanism. By means of random analysis technology, the sufficient conditions are given to guarantee the preset H∞H_\infty performance and variance constraint performance indexes of the system, and then the solution of the desired filter is obtained by using linear matrix inequalities. Finally, the validity and effectiveness of the proposed filter scheme are verified by numerical simulation

    Distributed Set-Based Observers Using Diffusion Strategy

    Full text link
    Distributed estimation is more robust against single points of failure and requires less communication overhead compared to the centralized version. Among distributed estimation techniques, set-based estimation has gained much attention as it provides estimation guarantees for safety-critical applications and copes with unknown but bounded uncertainties. We propose two distributed set-based observers using interval-based and set-membership approaches for a linear discrete-time dynamical system with bounded modeling and measurement uncertainties. Both algorithms utilize a new over-approximating zonotopes intersection step named the set-based diffusion step. We use the term diffusion since our intersection of zonotopes formula resembles the traditional diffusion step in the stochastic Kalman filter. Our new zonotopes intersection takes linear time. Our set-based diffusion step decreases the estimation errors and the size of estimated sets and can be seen as a lightweight approach to achieve partial consensus between the distributed estimated sets. Every node shares its measurement with its neighbor in the measurement update step. The neighbors intersect their estimated sets constituting our proposed set-based diffusion step. We represent sets as zonotopes since they compactly represent high-dimensional sets, and they are closed under linear mapping and Minkowski addition. The applicability of our algorithms is demonstrated by a localization example. All used data and code to recreate our findings are publicly availabl
    • …
    corecore