22,938 research outputs found

    Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous environment

    Get PDF
    Includes bibliographical references (pages 166-167).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. To maximize the performance of the system, it is essential to assign the resources to tasks (match) and order the execution of tasks on each resource (schedule) to exploit the heterogeneity of the resources and tasks. Dynamic mapping (defined as matching and scheduling) is performed when the arrival of tasks is not known a priori. In the heterogeneous environment considered in this study, tasks arrive randomly, tasks are independent (i.e., no inter-task communication), and tasks have priorities and multiple soft deadlines. The value of a task is calculated based on the priority of the task and the completion time of the task with respect to its deadlines. The goal of a dynamic mapping heuristic in this research is to maximize the value accrued of completed tasks in a given interval of time. This research proposes, evaluates, and compares eight dynamic mapping heuristics. Two static mapping schemes (all arrival information of tasks are known) are designed also for comparison. The performance of the best heuristics is 84% of a calculated upper bound for the scenarios considered

    Statistic Rate Monotonic Scheduling

    Full text link
    In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.National Science Foundation (CCR-970668
    • …
    corecore