2,695 research outputs found

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    Full text link
    Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, co-placement and scheduling of data with compute resources, and storing and transferring large volumes of data. We analyze the ecosystems of the two prominent paradigms for data-intensive applications, hereafter referred to as the high-performance computing and the Apache-Hadoop paradigm. We propose a basis, common terminology and functional factors upon which to analyze the two approaches of both paradigms. We discuss the concept of "Big Data Ogres" and their facets as means of understanding and characterizing the most common application workloads found across the two paradigms. We then discuss the salient features of the two paradigms, and compare and contrast the two approaches. Specifically, we examine common implementation/approaches of these paradigms, shed light upon the reasons for their current "architecture" and discuss some typical workloads that utilize them. In spite of the significant software distinctions, we believe there is architectural similarity. We discuss the potential integration of different implementations, across the different levels and components. Our comparison progresses from a fully qualitative examination of the two paradigms, to a semi-quantitative methodology. We use a simple and broadly used Ogre (K-means clustering), characterize its performance on a range of representative platforms, covering several implementations from both paradigms. Our experiments provide an insight into the relative strengths of the two paradigms. We propose that the set of Ogres will serve as a benchmark to evaluate the two paradigms along different dimensions.Comment: 8 pages, 2 figure

    MapReduce is Good Enough? If All You Have is a Hammer, Throw Away Everything That's Not a Nail!

    Full text link
    Hadoop is currently the large-scale data analysis "hammer" of choice, but there exist classes of algorithms that aren't "nails", in the sense that they are not particularly amenable to the MapReduce programming model. To address this, researchers have proposed MapReduce extensions or alternative programming models in which these algorithms can be elegantly expressed. This essay espouses a very different position: that MapReduce is "good enough", and that instead of trying to invent screwdrivers, we should simply get rid of everything that's not a nail. To be more specific, much discussion in the literature surrounds the fact that iterative algorithms are a poor fit for MapReduce: the simple solution is to find alternative non-iterative algorithms that solve the same problem. This essay captures my personal experiences as an academic researcher as well as a software engineer in a "real-world" production analytics environment. From this combined perspective I reflect on the current state and future of "big data" research

    Predicting Scheduling Failures in the Cloud

    Full text link
    Cloud Computing has emerged as a key technology to deliver and manage computing, platform, and software services over the Internet. Task scheduling algorithms play an important role in the efficiency of cloud computing services as they aim to reduce the turnaround time of tasks and improve resource utilization. Several task scheduling algorithms have been proposed in the literature for cloud computing systems, the majority relying on the computational complexity of tasks and the distribution of resources. However, several tasks scheduled following these algorithms still fail because of unforeseen changes in the cloud environments. In this paper, using tasks execution and resource utilization data extracted from the execution traces of real world applications at Google, we explore the possibility of predicting the scheduling outcome of a task using statistical models. If we can successfully predict tasks failures, we may be able to reduce the execution time of jobs by rescheduling failed tasks earlier (i.e., before their actual failing time). Our results show that statistical models can predict task failures with a precision up to 97.4%, and a recall up to 96.2%. We simulate the potential benefits of such predictions using the tool kit GloudSim and found that they can improve the number of finished tasks by up to 40%. We also perform a case study using the Hadoop framework of Amazon Elastic MapReduce (EMR) and the jobs of a gene expression correlations analysis study from breast cancer research. We find that when extending the scheduler of Hadoop with our predictive models, the percentage of failed jobs can be reduced by up to 45%, with an overhead of less than 5 minutes
    • …
    corecore