4,730 research outputs found

    An Optimal Application-Aware Resource Block Scheduling in LTE

    Full text link
    In this paper, we introduce an approach for application-aware resource block scheduling of elastic and inelastic adaptive real-time traffic in fourth generation Long Term Evolution (LTE) systems. The users are assigned to resource blocks. A transmission may use multiple resource blocks scheduled over frequency and time. In our model, we use logarithmic and sigmoidal-like utility functions to represent the users applications running on different user equipments (UE)s. We present an optimal problem with utility proportional fairness policy, where the fairness among users is in utility percentage (i.e user satisfaction with the service) of the corresponding applications. Our objective is to allocate the resources to the users with priority given to the adaptive real-time application users. In addition, a minimum resource allocation for users with elastic and inelastic traffic should be guaranteed. Every user subscribing for the mobile service should have a minimum quality-of-service (QoS) with a priority criterion. We prove that our scheduling policy exists and achieves the maximum. Therefore the optimal solution is tractable. We present a centralized scheduling algorithm to allocate evolved NodeB (eNodeB) resources optimally with a priority criterion. Finally, we present simulation results for the performance of our scheduling algorithm and compare our results with conventional proportional fairness approaches. The results show that the user satisfaction is higher with our proposed method.Comment: 5 page

    Fairness Evaluation in Cooperative Hybrid Cellular Systems

    Get PDF
    Many method has been applied previously to improve the fairness of a wireless communication system. In this paper, we propose using hybrid schemes, where more than one transmission scheme are used in one system, to achieve this objective. These schemes consist of cooperative transmission schemes, maximal ratio transmission and interference alignment, and non-cooperative schemes, orthogonal and non-orthogonal schemes used alongside and in combinations in the same system to improve the fairness. We provide different weight calculation methods to vary the output of the fairness problem. We show the solution of the radio resource allocation problem for the transmission schemes used. Finally, simulation results is provided to show fairness achieved, in terms of Jain's fairness index, by applying the hybrid schemes proposed and the different weight calculation methods at different inter-site distances

    An Application-Aware Spectrum Sharing Approach for Commercial Use of 3.5 GHz Spectrum

    Full text link
    In this paper, we introduce an application-aware spectrum sharing approach for sharing the Federal under-utilized 3.5 GHz spectrum with commercial users. In our model, users are running elastic or inelastic traffic and each application running on the user equipment (UE) is assigned a utility function based on its type. Furthermore, each of the small cells users has a minimum required target utility for its application. In order for users located under the coverage area of the small cells' eNodeBs, with the 3.5 GHz band resources, to meet their minimum required quality of experience (QoE), the network operator makes a decision regarding the need for sharing the macro cell's resources to obtain additional resources. Our objective is to provide each user with a rate that satisfies its application's minimum required utility through spectrum sharing approach and improve the overall QoE in the network. We present an application-aware spectrum sharing algorithm that is based on resource allocation with carrier aggregation to allocate macro cell permanent resources and small cells' leased resources to UEs and allocate each user's application an aggregated rate that can at minimum achieves the application's minimum required utility. Finally, we present simulation results for the performance of the proposed algorithm.Comment: Submitted to IEE
    • …
    corecore