606 research outputs found

    A Web Aggregation Approach for Distributed Randomized PageRank Algorithms

    Full text link
    The PageRank algorithm employed at Google assigns a measure of importance to each web page for rankings in search results. In our recent papers, we have proposed a distributed randomized approach for this algorithm, where web pages are treated as agents computing their own PageRank by communicating with linked pages. This paper builds upon this approach to reduce the computation and communication loads for the algorithms. In particular, we develop a method to systematically aggregate the web pages into groups by exploiting the sparsity inherent in the web. For each group, an aggregated PageRank value is computed, which can then be distributed among the group members. We provide a distributed update scheme for the aggregated PageRank along with an analysis on its convergence properties. The method is especially motivated by results on singular perturbation techniques for large-scale Markov chains and multi-agent consensus.Comment: To appear in the IEEE Transactions on Automatic Control, 201

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    FrogWild! -- Fast PageRank Approximations on Graph Engines

    Full text link
    We propose FrogWild, a novel algorithm for fast approximation of high PageRank vertices, geared towards reducing network costs of running traditional PageRank algorithms. Our algorithm can be seen as a quantized version of power iteration that performs multiple parallel random walks over a directed graph. One important innovation is that we introduce a modification to the GraphLab framework that only partially synchronizes mirror vertices. This partial synchronization vastly reduces the network traffic generated by traditional PageRank algorithms, thus greatly reducing the per-iteration cost of PageRank. On the other hand, this partial synchronization also creates dependencies between the random walks used to estimate PageRank. Our main theoretical innovation is the analysis of the correlations introduced by this partial synchronization process and a bound establishing that our approximation is close to the true PageRank vector. We implement our algorithm in GraphLab and compare it against the default PageRank implementation. We show that our algorithm is very fast, performing each iteration in less than one second on the Twitter graph and can be up to 7x faster compared to the standard GraphLab PageRank implementation

    Distributed estimation and control of node centrality in undirected asymmetric networks

    Full text link
    Measures of node centrality that describe the importance of a node within a network are crucial for understanding the behavior of social networks and graphs. In this paper, we address the problems of distributed estimation and control of node centrality in undirected graphs with asymmetric weight values. In particular, we focus our attention on α\alpha-centrality, which can be seen as a generalization of eigenvector centrality. In this setting, we first consider a distributed protocol where agents compute their α\alpha-centrality, focusing on the convergence properties of the method; then, we combine the estimation method with a consensus algorithm to achieve a consensus value weighted by the influence of each node in the network. Finally, we formulate an α\alpha-centrality control problem which is naturally decoupled and, thus, suitable for a distributed setting and we apply this formulation to protect the most valuable nodes in a network against a targeted attack, by making every node in the network equally important in terms of {\alpha}-centrality. Simulations results are provided to corroborate the theoretical findings.Comment: published on IEEE Transactions on Automatic Control https://ieeexplore.ieee.org/abstract/document/912618

    Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank

    Full text link
    In this paper, we propose three methods to solve the PageRank problem for the transition matrices with both row and column sparsity. Our methods reduce the PageRank problem to the convex optimization problem over the simplex. The first algorithm is based on the gradient descent in L1 norm instead of the Euclidean one. The second algorithm extends the Frank-Wolfe to support sparse gradient updates. The third algorithm stands for the mirror descent algorithm with a randomized projection. We proof converges rates for these methods for sparse problems as well as numerical experiments support their effectiveness.Comment: 26 page
    corecore