5,437 research outputs found

    Distributed Private Heavy Hitters

    Full text link
    In this paper, we give efficient algorithms and lower bounds for solving the heavy hitters problem while preserving differential privacy in the fully distributed local model. In this model, there are n parties, each of which possesses a single element from a universe of size N. The heavy hitters problem is to find the identity of the most common element shared amongst the n parties. In the local model, there is no trusted database administrator, and so the algorithm must interact with each of the nn parties separately, using a differentially private protocol. We give tight information-theoretic upper and lower bounds on the accuracy to which this problem can be solved in the local model (giving a separation between the local model and the more common centralized model of privacy), as well as computationally efficient algorithms even in the case where the data universe N may be exponentially large

    Lightweight Techniques for Private Heavy Hitters

    Full text link
    This paper presents a new protocol for solving the private heavy-hitters problem. In this problem, there are many clients and a small set of data-collection servers. Each client holds a private bitstring. The servers want to recover the set of all popular strings, without learning anything else about any client's string. A web-browser vendor, for instance, can use our protocol to figure out which homepages are popular, without learning any user's homepage. We also consider the simpler private subset-histogram problem, in which the servers want to count how many clients hold strings in a particular set without revealing this set to the clients. Our protocols use two data-collection servers and, in a protocol run, each client send sends only a single message to the servers. Our protocols protect client privacy against arbitrary misbehavior by one of the servers and our approach requires no public-key cryptography (except for secure channels), nor general-purpose multiparty computation. Instead, we rely on incremental distributed point functions, a new cryptographic tool that allows a client to succinctly secret-share the labels on the nodes of an exponentially large binary tree, provided that the tree has a single non-zero path. Along the way, we develop new general tools for providing malicious security in applications of distributed point functions. In an experimental evaluation with two servers on opposite sides of the U.S., the servers can find the 200 most popular strings among a set of 400,000 client-held 256-bit strings in 54 minutes. Our protocols are highly parallelizable. We estimate that with 20 physical machines per logical server, our protocols could compute heavy hitters over ten million clients in just over one hour of computation.Comment: To appear in IEEE Security & Privacy 202

    Heavy Hitters and the Structure of Local Privacy

    Full text link
    We present a new locally differentially private algorithm for the heavy hitters problem which achieves optimal worst-case error as a function of all standardly considered parameters. Prior work obtained error rates which depend optimally on the number of users, the size of the domain, and the privacy parameter, but depend sub-optimally on the failure probability. We strengthen existing lower bounds on the error to incorporate the failure probability, and show that our new upper bound is tight with respect to this parameter as well. Our lower bound is based on a new understanding of the structure of locally private protocols. We further develop these ideas to obtain the following general results beyond heavy hitters. ∙\bullet Advanced Grouposition: In the local model, group privacy for kk users degrades proportionally to ≈k\approx \sqrt{k}, instead of linearly in kk as in the central model. Stronger group privacy yields improved max-information guarantees, as well as stronger lower bounds (via "packing arguments"), over the central model. ∙\bullet Building on a transformation of Bassily and Smith (STOC 2015), we give a generic transformation from any non-interactive approximate-private local protocol into a pure-private local protocol. Again in contrast with the central model, this shows that we cannot obtain more accurate algorithms by moving from pure to approximate local privacy
    • …
    corecore