150 research outputs found

    Dynamic Power Splitting Policies for AF Relay Networks with Wireless Energy Harvesting

    Full text link
    Wireless energy harvesting (WEH) provides an exciting way to supply energy for relay nodes to forward information for the source-destination pairs. In this paper, we investigate the problem on how the relay node dynamically adjusts the power splitting ratio of information transmission (IT) and energy harvesting (EH) in order to achieve the optimal outage performance. According to the knowledge of channel state information (CSI) at the relay, optimal dynamic power splitting policy with full CSI and partial CSI are both provided. Finally, through simulations, the proposed power splitting policies can improve the outage performances and the policy with full CSI achieves the best performance. It is also shown that the policy with partial CSI can approach the policy with full CSI closely and incurs far less system overhead.Comment: accepted by IEEE ICC 2015 - Workshop on Green Communications and Networks with Energy Harvesting, Smart Grids, and Renewable Energie

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms

    Wireless-powered cooperative communications: protocol design, performance analysis and resource allocation

    Get PDF
    Radio frequency (RF) energy transfer technique has attracted much attention and has recently been regarded as a key enabling technique for wireless-powered communications. However, the high attenuation of RF energy transfer over distance has greatly limited the performance and applications of WPCNs in practical scenarios. To overcome this essential hurdle, in this thesis we propose to combat the propagation attenuation by incorporating cooperative communication techniques in WPCNs. This opens a new paradigm named wireless-powered cooperative communication and raises many new research opportunities with promising applications. In this thesis, we focus on the novel protocol design, performance analysis and resource allocation of wireless-powered cooperative communication networks (WPCCNs). We first propose a harvest-then-cooperate (HTC) protocol for WPCCNs, where the wireless-powered source and relay(s) harvest energy from the AP in the downlink (DL) and work cooperatively in the uplink (UL) for transmitting source information. The average throughput performance of the HTC protocol with two single relay selection schemes is analyzed. We then design two novel protocols and study the optimal resource allocation for another setup of WPCCNs with a hybrid relay that has a constant power supply. Besides cooperating with the source for UL information transmission, the hybrid relay also transmits RF energy concurrently with the AP during the DL energy transfer phase. Subsequently, we adopt the Stackelberg game to model the strategic interactions in power beacon (PB)-assisted WPCCNs, where PBs are deployed to provide wireless charging services to wireless-powered users via RF energy transfer and are installed by different operators with the AP. Finally, we develop a distributed power splitting framework using non-cooperative game theory for a large-scale WPCCN, where multiple source-destination pairs communicate through their dedicated wireless-powered relays
    • …
    corecore