19 research outputs found

    Continuous-time integral dynamics for Aggregative Game equilibrium seeking

    Get PDF
    In this paper, we consider continuous-time semi-decentralized dynamics for the equilibrium computation in a class of aggregative games. Specifically, we propose a scheme where decentralized projected-gradient dynamics are driven by an integral control law. To prove global exponential convergence of the proposed dynamics to an aggregative equilibrium, we adopt a quadratic Lyapunov function argument. We derive a sufficient condition for global convergence that we position within the recent literature on aggregative games, and in particular we show that it improves on established results

    A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games

    Full text link
    We address the generalized aggregative equilibrium seeking problem for noncooperative agents playing average aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized aggregative equilibria of the game as the zeros of a monotone set-valued operator. Then, we massage the Douglas-Rachford splitting to solve the monotone inclusion problem and derive a single layer, semi-decentralized algorithm whose global convergence is guaranteed under mild assumptions. The potential of the proposed Douglas-Rachford algorithm is shown on a simplified resource allocation game, where we observe faster convergence with respect to forward-backward algorithms.Comment: arXiv admin note: text overlap with arXiv:1803.1044

    Projected-gradient algorithms for generalized equilibrium seeking in Aggregative Games are preconditioned Forward-Backward methods

    Full text link
    We show that projected-gradient methods for the distributed computation of generalized Nash equilibria in aggregative games are preconditioned forward-backward splitting methods applied to the KKT operator of the game. Specifically, we adopt the preconditioned forward-backward design, recently conceived by Yi and Pavel in the manuscript "A distributed primal-dual algorithm for computation of generalized Nash equilibria via operator splitting methods" for generalized Nash equilibrium seeking in aggregative games. Consequently, we notice that two projected-gradient methods recently proposed in the literature are preconditioned forward-backward methods. More generally, we provide a unifying operator-theoretic ground to design projected-gradient methods for generalized equilibrium seeking in aggregative games

    Distributed Aggregative Optimization over Multi-Agent Networks

    Full text link
    This paper proposes a new framework for distributed optimization, called distributed aggregative optimization, which allows local objective functions to be dependent not only on their own decision variables, but also on the average of summable functions of decision variables of all other agents. To handle this problem, a distributed algorithm, called distributed gradient tracking (DGT), is proposed and analyzed, where the global objective function is strongly convex, and the communication graph is balanced and strongly connected. It is shown that the algorithm can converge to the optimal variable at a linear rate. A numerical example is provided to corroborate the theoretical result

    Distributed strategy-updating rules for aggregative games of multi-integrator systems with coupled constraints

    Full text link
    In this paper, we explore aggregative games over networks of multi-integrator agents with coupled constraints. To reach the general Nash equilibrium of an aggregative game, a distributed strategy-updating rule is proposed by a combination of the coordination of Lagrange multipliers and the estimation of the aggregator. Each player has only access to partial-decision information and communicates with his neighbors in a weight-balanced digraph which characterizes players' preferences as to the values of information received from neighbors. We first consider networks of double-integrator agents and then focus on multi-integrator agents. The effectiveness of the proposed strategy-updating rules is demonstrated by analyzing the convergence of corresponding dynamical systems via the Lyapunov stability theory, singular perturbation theory and passive theory. Numerical examples are given to illustrate our results.Comment: 9 pages, 4 figure

    Distributed Online Convex Optimization with an Aggregative Variable

    Full text link
    This paper investigates distributed online convex optimization in the presence of an aggregative variable without any global/central coordinators over a multi-agent network, where each individual agent is only able to access partial information of time-varying global loss functions, thus requiring local information exchanges between neighboring agents. Motivated by many applications in reality, the considered local loss functions depend not only on their own decision variables, but also on an aggregative variable, such as the average of all decision variables. To handle this problem, an Online Distributed Gradient Tracking algorithm (O-DGT) is proposed with exact gradient information and it is shown that the dynamic regret is upper bounded by three terms: a sublinear term, a path variation term, and a gradient variation term. Meanwhile, the O-DGT algorithm is also analyzed with stochastic/noisy gradients, showing that the expected dynamic regret has the same upper bound as the exact gradient case. To our best knowledge, this paper is the first to study online convex optimization in the presence of an aggregative variable, which enjoys new characteristics in comparison with the conventional scenario without the aggregative variable. Finally, a numerical experiment is provided to corroborate the obtained theoretical results

    Distributed Generalized Nash Equilibrium Seeking for Energy Sharing Games

    Full text link
    With the proliferation of distributed generators and energy storage systems, traditional passive consumers in power systems have been gradually evolving into the so-called "prosumers", i.e., proactive consumers, which can both produce and consume power. To encourage energy exchange among prosumers, energy sharing is increasingly adopted, which is usually formulated as a generalized Nash game (GNG). In this paper, a distributed approach is proposed to seek the Generalized Nash equilibrium (GNE) of the energy sharing game. To this end, we convert the GNG into an equivalent optimization problem. A Krasnosel'ski{\v{i}}-Mann iteration type algorithm is thereby devised to solve the problem and consequently find the GNE in a distributed manner. The convergence of the proposed algorithm is proved rigorously based on the nonexpansive operator theory. The performance of the algorithm is validated by experiments with three prosumers, and the scalability is tested by simulations using 123 prosumers
    corecore