9 research outputs found

    Distributed MAC Protocol Supporting Physical-Layer Network Coding

    Full text link
    Physical-layer network coding (PNC) is a promising approach for wireless networks. It allows nodes to transmit simultaneously. Due to the difficulties of scheduling simultaneous transmissions, existing works on PNC are based on simplified medium access control (MAC) protocols, which are not applicable to general multi-hop wireless networks, to the best of our knowledge. In this paper, we propose a distributed MAC protocol that supports PNC in multi-hop wireless networks. The proposed MAC protocol is based on the carrier sense multiple access (CSMA) strategy and can be regarded as an extension to the IEEE 802.11 MAC protocol. In the proposed protocol, each node collects information on the queue status of its neighboring nodes. When a node finds that there is an opportunity for some of its neighbors to perform PNC, it notifies its corresponding neighboring nodes and initiates the process of packet exchange using PNC, with the node itself as a relay. During the packet exchange process, the relay also works as a coordinator which coordinates the transmission of source nodes. Meanwhile, the proposed protocol is compatible with conventional network coding and conventional transmission schemes. Simulation results show that the proposed protocol is advantageous in various scenarios of wireless applications.Comment: Final versio

    Adaptive relaying method selection for multi-rate wireless networks with network coding

    No full text

    A Joint Network Coding and Scheduling Algorithm in Wireless Network

    Get PDF
    Network coding (NC) is an emerging technique of packet forwarding thatencodes packets at relay node in order to increase network throughput. It is understoodthat the performance of NC is strongly dependent on the physical layer as well as theMAC layer, and greedy coding method may in fact reduce the network throughputowing to the reduction in the spatial reuse. In this paper, we propose a NC-awarescheduling method combining link aggregation to improve the network throughput byconsidering the interplay between NC and spatial reuse. Simulation resultsdemonstrate the effectiveness of our proposed link aggregation method compared withthe unicast transmission model

    Compute-and-forward on a line network with random access

    Get PDF
    Signal superposition and broadcast are important features of the wireless medium. Compute-and-Forward, also known as Physical Layer Network Coding (PLNC), is a technique exploiting these features in order to improve performance of wireless networks. More precisely, it allows wireless terminals to reliably de- code a linear combination of all messages, when a superposition of the messages is received through the physical medium.\ud In this paper, we propose a random PLNC scheme for a local interference line network in which nodes perform random access scheduling. We prove that our PLNC scheme is capacity achieving in the case of one symmetric bi-directional session with terminals on both ends of this line network model. We demonstrate that our scheme significantly outperforms any other scheme. In particular, by eligibly choosing the access rate of the random access scheduling mechanism for the network, the throughput of our PLNC scheme is at least 3.4 and 1.7 times better than traditional routing and plain network coding, respectively

    Wireless Broadcast with Physical-Layer Network Coding

    Full text link
    This work investigates the maximum broadcast throughput and its achievability in multi-hop wireless networks with half-duplex node constraint. We allow the use of physical-layer network coding (PNC). Although the use of PNC for unicast has been extensively studied, there has been little prior work on PNC for broadcast. Our specific results are as follows: 1) For single-source broadcast, the theoretical throughput upper bound is n/(n+1), where n is the "min vertex-cut" size of the network. 2) In general, the throughput upper bound is not always achievable. 3) For grid and many other networks, the throughput upper bound n/(n+1) is achievable. Our work can be considered as an attempt to understand the relationship between max-flow and min-cut in half-duplex broadcast networks with cycles (there has been prior work on networks with cycles, but not half-duplex broadcast networks).Comment: 23 pages, 18 figures, 6 table
    corecore