137,867 research outputs found

    Killing Two Birds with One Stone: Quantization Achieves Privacy in Distributed Learning

    Full text link
    Communication efficiency and privacy protection are two critical issues in distributed machine learning. Existing methods tackle these two issues separately and may have a high implementation complexity that constrains their application in a resource-limited environment. We propose a comprehensive quantization-based solution that could simultaneously achieve communication efficiency and privacy protection, providing new insights into the correlated nature of communication and privacy. Specifically, we demonstrate the effectiveness of our proposed solutions in the distributed stochastic gradient descent (SGD) framework by adding binomial noise to the uniformly quantized gradients to reach the desired differential privacy level but with a minor sacrifice in communication efficiency. We theoretically capture the new trade-offs between communication, privacy, and learning performance

    Blind quantum machine learning with quantum bipartite correlator

    Full text link
    Distributed quantum computing is a promising computational paradigm for performing computations that are beyond the reach of individual quantum devices. Privacy in distributed quantum computing is critical for maintaining confidentiality and protecting the data in the presence of untrusted computing nodes. In this work, we introduce novel blind quantum machine learning protocols based on the quantum bipartite correlator algorithm. Our protocols have reduced communication overhead while preserving the privacy of data from untrusted parties. We introduce robust algorithm-specific privacy-preserving mechanisms with low computational overhead that do not require complex cryptographic techniques. We then validate the effectiveness of the proposed protocols through complexity and privacy analysis. Our findings pave the way for advancements in distributed quantum computing, opening up new possibilities for privacy-aware machine learning applications in the era of quantum technologies.Comment: 11 pages, 3 figure

    Adaptive Federated Minimax Optimization with Lower complexities

    Full text link
    Federated learning is a popular distributed and privacy-preserving machine learning paradigm. Meanwhile, minimax optimization, as an effective hierarchical optimization, is widely applied in machine learning. Recently, some federated optimization methods have been proposed to solve the distributed minimax problems. However, these federated minimax methods still suffer from high gradient and communication complexities. Meanwhile, few algorithm focuses on using adaptive learning rate to accelerate algorithms. To fill this gap, in the paper, we study a class of nonconvex minimax optimization, and propose an efficient adaptive federated minimax optimization algorithm (i.e., AdaFGDA) to solve these distributed minimax problems. Specifically, our AdaFGDA builds on the momentum-based variance reduced and local-SGD techniques, and it can flexibly incorporate various adaptive learning rates by using the unified adaptive matrix. Theoretically, we provide a solid convergence analysis framework for our AdaFGDA algorithm under non-i.i.d. setting. Moreover, we prove our algorithms obtain lower gradient (i.e., stochastic first-order oracle, SFO) complexity of O~(ϵ−3)\tilde{O}(\epsilon^{-3}) with lower communication complexity of O~(ϵ−2)\tilde{O}(\epsilon^{-2}) in finding ϵ\epsilon-stationary point of the nonconvex minimax problems. Experimentally, we conduct some experiments on the deep AUC maximization and robust neural network training tasks to verify efficiency of our algorithms.Comment: Submitted to AISTATS-202

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    LOCKS: User Differentially Private and Federated Optimal Client Sampling

    Full text link
    With changes in privacy laws, there is often a hard requirement for client data to remain on the device rather than being sent to the server. Therefore, most processing happens on the device, and only an altered element is sent to the server. Such mechanisms are developed by leveraging differential privacy and federated learning. Differential privacy adds noise to the client outputs and thus deteriorates the quality of each iteration. This distributed setting adds a layer of complexity and additional communication and performance overhead. These costs are additive per round, so we need to reduce the number of iterations. In this work, we provide an analytical framework for studying the convergence guarantees of gradient-based distributed algorithms. We show that our private algorithm minimizes the expected gradient variance by approximately d2d^2 rounds, where d is the dimensionality of the model. We discuss and suggest novel ways to improve the convergence rate to minimize the overhead using Importance Sampling (IS) and gradient diversity. Finally, we provide alternative frameworks that might be better suited to exploit client sampling techniques like IS and gradient diversity
    • …
    corecore