3,455 research outputs found

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Event-based recursive distributed filtering over wireless sensor networks

    Get PDF
    In this technical note, the distributed filtering problem is investigated for a class of discrete time-varying systems with an event-based communication mechanism. Each intelligent sensor node transmits the data to its neighbors only when the local innovation violates a predetermined Send-on-Delta (SoD) data transmission condition. The aim of the proposed problem is to construct a distributed filter for each sensor node subject to sporadic communications over wireless networks. In terms of an event indicator variable, the triggering information is utilized so as to reduce the conservatism in the filter analysis. An upper bound for the filtering error covariance is obtained in form of Riccati-like difference equations by utilizing the inductive method. Subsequently, such an upper bound is minimized by appropriately designing the filter parameters iteratively, where a novel matrix simplification technique is developed to handle the challenges resulting from the sparseness of the sensor network topology and filter structure preserving issues. The effectiveness of the proposed strategy is illustrated by a numerical simulation.This work is supported by National Basic Research Program of China (973 Program) under Grant 2010CB731800, National Natural Science Foundation of China under Grants 61210012, 61290324, 61473163 and 61273156, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Jiangsu and Economics of China under Grant JSEB201301

    Distributed Object Tracking Using a Cluster-Based Kalman Filter in Wireless Camera Networks

    Get PDF
    Local data aggregation is an effective means to save sensor node energy and prolong the lifespan of wireless sensor networks. However, when a sensor network is used to track moving objects, the task of local data aggregation in the network presents a new set of challenges, such as the necessity to estimate, usually in real time, the constantly changing state of the target based on information acquired by the nodes at different time instants. To address these issues, we propose a distributed object tracking system which employs a cluster-based Kalman filter in a network of wireless cameras. When a target is detected, cameras that can observe the same target interact with one another to form a cluster and elect a cluster head. Local measurements of the target acquired by members of the cluster are sent to the cluster head, which then estimates the target position via Kalman filtering and periodically transmits this information to a base station. The underlying clustering protocol allows the current state and uncertainty of the target position to be easily handed off among clusters as the object is being tracked. This allows Kalman filter-based object tracking to be carried out in a distributed manner. An extended Kalman filter is necessary since measurements acquired by the cameras are related to the actual position of the target by nonlinear transformations. In addition, in order to take into consideration the time uncertainty in the measurements acquired by the different cameras, it is necessary to introduce nonlinearity in the system dynamics. Our object tracking protocol requires the transmission of significantly fewer messages than a centralized tracker that naively transmits all of the local measurements to the base station. It is also more accurate than a decentralized tracker that employs linear interpolation for local data aggregation. Besides, the protocol is able to perform real-time estimation because our implementation takes into consideration the sparsit- - y of the matrices involved in the problem. The experimental results show that our distributed object tracking protocol is able to achieve tracking accuracy comparable to the centralized tracking method, while requiring a significantly smaller number of message transmissions in the network

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany
    corecore