2 research outputs found

    Distributed Inference and Query Processing for RFID Tracking and Monitoring

    Get PDF
    In this paper, we present the design of a scalable, distributed stream processing system for RFID tracking and monitoring. Since RFID data lacks containment and location information that is key to query processing, we propose to combine location and containment inference with stream query processing in a single architecture, with inference as an enabling mechanism for high-level query processing. We further consider challenges in instantiating such a system in large distributed settings and design techniques for distributed inference and query processing. Our experimental results, using both real-world data and large synthetic traces, demonstrate the accuracy, efficiency, and scalability of our proposed techniques.Comment: VLDB201

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    corecore