188 research outputs found

    Improving SIEM for critical SCADA water infrastructures using machine learning

    Get PDF
    Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work helps in accelerating the mitigation process by notifying the operator with additional information when an anomaly occurs. This additional information includes the probability and confidence level of event(s) occurring. The model is trained and tested using a real-world dataset

    Learning-guided network fuzzing for testing cyber-physical system defences

    Get PDF
    The threat of attack faced by cyber-physical systems (CPSs), especially when they play a critical role in automating public infrastructure, has motivated research into a wide variety of attack defence mechanisms. Assessing their effectiveness is challenging, however, as realistic sets of attacks to test them against are not always available. In this paper, we propose smart fuzzing, an automated, machine learning guided technique for systematically finding 'test suites' of CPS network attacks, without requiring any knowledge of the system's control programs or physical processes. Our approach uses predictive machine learning models and metaheuristic search algorithms to guide the fuzzing of actuators so as to drive the CPS into different unsafe physical states. We demonstrate the efficacy of smart fuzzing by implementing it for two real-world CPS testbeds---a water purification plant and a water distribution system---finding attacks that drive them into 27 different unsafe states involving water flow, pressure, and tank levels, including six that were not covered by an established attack benchmark. Finally, we use our approach to test the effectiveness of an invariant-based defence system for the water treatment plant, finding two attacks that were not detected by its physical invariant checks, highlighting a potential weakness that could be exploited in certain conditions.Comment: Accepted by ASE 201

    Control Behavior Integrity for Distributed Cyber-Physical Systems

    Get PDF
    Cyber-physical control systems, such as industrial control systems (ICS), are increasingly targeted by cyberattacks. Such attacks can potentially cause tremendous damage, affect critical infrastructure or even jeopardize human life when the system does not behave as intended. Cyberattacks, however, are not new and decades of security research have developed plenty of solutions to thwart them. Unfortunately, many of these solutions cannot be easily applied to safety-critical cyber-physical systems. Further, the attack surface of ICS is quite different from what can be commonly assumed in classical IT systems. We present Scadman, a system with the goal to preserve the Control Behavior Integrity (CBI) of distributed cyber-physical systems. By observing the system-wide behavior, the correctness of individual controllers in the system can be verified. This allows Scadman to detect a wide range of attacks against controllers, like programmable logic controller (PLCs), including malware attacks, code-reuse and data-only attacks. We implemented and evaluated Scadman based on a real-world water treatment testbed for research and training on ICS security. Our results show that we can detect a wide range of attacks--including attacks that have previously been undetectable by typical state estimation techniques--while causing no false-positive warning for nominal threshold values.Comment: 15 pages, 8 figure

    Anomaly detection for a water treatment system using unsupervised machine learning

    Get PDF
    National Research Foundation (NRF) Singapor

    A Systematic Review of the State of Cyber-Security in Water Systems

    Get PDF
    Critical infrastructure systems are evolving from isolated bespoke systems to those that use general-purpose computing hosts, IoT sensors, edge computing, wireless networks and artificial intelligence. Although this move improves sensing and control capacity and gives better integration with business requirements, it also increases the scope for attack from malicious entities that intend to conduct industrial espionage and sabotage against these systems. In this paper, we review the state of the cyber-security research that is focused on improving the security of the water supply and wastewater collection and treatment systems that form part of the critical national infrastructure. We cover the publication statistics of the research in this area, the aspects of security being addressed, and future work required to achieve better cyber-security for water systems
    corecore