188 research outputs found
Improving SIEM for critical SCADA water infrastructures using machine learning
Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work helps in accelerating the mitigation process by notifying the operator with additional information when an anomaly occurs. This additional information includes the probability and confidence level of event(s) occurring. The model is trained and tested using a real-world dataset
Security and resilience of cyber-physical infrastructures:Proceedings of the First International Workshop held on 06 April 2016 in conjunction with the International Symposium on Engineering Secure Software and Systems, London, UK
Learning-guided network fuzzing for testing cyber-physical system defences
The threat of attack faced by cyber-physical systems (CPSs), especially when
they play a critical role in automating public infrastructure, has motivated
research into a wide variety of attack defence mechanisms. Assessing their
effectiveness is challenging, however, as realistic sets of attacks to test
them against are not always available. In this paper, we propose smart fuzzing,
an automated, machine learning guided technique for systematically finding
'test suites' of CPS network attacks, without requiring any knowledge of the
system's control programs or physical processes. Our approach uses predictive
machine learning models and metaheuristic search algorithms to guide the
fuzzing of actuators so as to drive the CPS into different unsafe physical
states. We demonstrate the efficacy of smart fuzzing by implementing it for two
real-world CPS testbeds---a water purification plant and a water distribution
system---finding attacks that drive them into 27 different unsafe states
involving water flow, pressure, and tank levels, including six that were not
covered by an established attack benchmark. Finally, we use our approach to
test the effectiveness of an invariant-based defence system for the water
treatment plant, finding two attacks that were not detected by its physical
invariant checks, highlighting a potential weakness that could be exploited in
certain conditions.Comment: Accepted by ASE 201
Control Behavior Integrity for Distributed Cyber-Physical Systems
Cyber-physical control systems, such as industrial control systems (ICS), are
increasingly targeted by cyberattacks. Such attacks can potentially cause
tremendous damage, affect critical infrastructure or even jeopardize human life
when the system does not behave as intended. Cyberattacks, however, are not new
and decades of security research have developed plenty of solutions to thwart
them. Unfortunately, many of these solutions cannot be easily applied to
safety-critical cyber-physical systems. Further, the attack surface of ICS is
quite different from what can be commonly assumed in classical IT systems.
We present Scadman, a system with the goal to preserve the Control Behavior
Integrity (CBI) of distributed cyber-physical systems. By observing the
system-wide behavior, the correctness of individual controllers in the system
can be verified. This allows Scadman to detect a wide range of attacks against
controllers, like programmable logic controller (PLCs), including malware
attacks, code-reuse and data-only attacks. We implemented and evaluated Scadman
based on a real-world water treatment testbed for research and training on ICS
security. Our results show that we can detect a wide range of
attacks--including attacks that have previously been undetectable by typical
state estimation techniques--while causing no false-positive warning for
nominal threshold values.Comment: 15 pages, 8 figure
Anomaly detection for a water treatment system using unsupervised machine learning
National Research Foundation (NRF) Singapor
A Systematic Review of the State of Cyber-Security in Water Systems
Critical infrastructure systems are evolving from isolated bespoke systems to those that use general-purpose computing hosts, IoT sensors, edge computing, wireless networks and artificial intelligence. Although this move improves sensing and control capacity and gives better integration with business requirements, it also increases the scope for attack from malicious entities that intend to conduct industrial espionage and sabotage against these systems. In this paper, we review the state of the cyber-security research that is focused on improving the security of the water supply and wastewater collection and treatment systems that form part of the critical national infrastructure. We cover the publication statistics of the research in this area, the aspects of security being addressed, and future work required to achieve better cyber-security for water systems
- …
