6,520 research outputs found

    Algorithm-Directed Crash Consistence in Non-Volatile Memory for HPC

    Full text link
    Fault tolerance is one of the major design goals for HPC. The emergence of non-volatile memories (NVM) provides a solution to build fault tolerant HPC. Data in NVM-based main memory are not lost when the system crashes because of the non-volatility nature of NVM. However, because of volatile caches, data must be logged and explicitly flushed from caches into NVM to ensure consistence and correctness before crashes, which can cause large runtime overhead. In this paper, we introduce an algorithm-based method to establish crash consistence in NVM for HPC applications. We slightly extend application data structures or sparsely flush cache blocks, which introduce ignorable runtime overhead. Such extension or cache flushing allows us to use algorithm knowledge to \textit{reason} data consistence or correct inconsistent data when the application crashes. We demonstrate the effectiveness of our method for three algorithms, including an iterative solver, dense matrix multiplication, and Monte-Carlo simulation. Based on comprehensive performance evaluation on a variety of test environments, we demonstrate that our approach has very small runtime overhead (at most 8.2\% and less than 3\% in most cases), much smaller than that of traditional checkpoint, while having the same or less recomputation cost.Comment: 12 page

    {\mu}-DDRL: A QoS-Aware Distributed Deep Reinforcement Learning Technique for Service Offloading in Fog computing Environments

    Full text link
    Fog and Edge computing extend cloud services to the proximity of end users, allowing many Internet of Things (IoT) use cases, particularly latency-critical applications. Smart devices, such as traffic and surveillance cameras, often do not have sufficient resources to process computation-intensive and latency-critical services. Hence, the constituent parts of services can be offloaded to nearby Edge/Fog resources for processing and storage. However, making offloading decisions for complex services in highly stochastic and dynamic environments is an important, yet difficult task. Recently, Deep Reinforcement Learning (DRL) has been used in many complex service offloading problems; however, existing techniques are most suitable for centralized environments, and their convergence to the best-suitable solutions is slow. In addition, constituent parts of services often have predefined data dependencies and quality of service constraints, which further intensify the complexity of service offloading. To solve these issues, we propose a distributed DRL technique following the actor-critic architecture based on Asynchronous Proximal Policy Optimization (APPO) to achieve efficient and diverse distributed experience trajectory generation. Also, we employ PPO clipping and V-trace techniques for off-policy correction for faster convergence to the most suitable service offloading solutions. The results obtained demonstrate that our technique converges quickly, offers high scalability and adaptability, and outperforms its counterparts by improving the execution time of heterogeneous services
    • …
    corecore