11,747 research outputs found

    Distributed Matrix-Vector Multiplication: A Convolutional Coding Approach

    Get PDF
    Distributed computing systems are well-known to suffer from the problem of slow or failed nodes; these are referred to as stragglers. Straggler mitigation (for distributed matrix computations) has recently been investigated from the standpoint of erasure coding in several works. In this work we present a strategy for distributed matrix-vector multiplication based on convolutional coding. Our scheme can be decoded using a low-complexity peeling decoder. The recovery process enjoys excellent numerical stability as compared to Reed-Solomon coding based approaches (which exhibit significant problems owing their badly conditioned decoding matrices). Finally, our schemes are better matched to the practically important case of sparse matrix-vector multiplication as compared to many previous schemes. Extensive simulation results corroborate our findings

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning
    • …
    corecore