2 research outputs found

    Distributed Continuous-Time and Discrete-Time Optimization With Nonuniform Unbounded Convex Constraint Sets and Nonuniform Stepsizes

    Full text link
    This paper is devoted to distributed continuous-time and discrete-time optimization problems with nonuniform convex constraint sets and nonuniform stepsizes for general differentiable convex objective functions. The communication graphs are not required to be strongly connected at any time, the gradients of the local objective functions are not required to be bounded when their independent variables tend to infinity, and the constraint sets are not required to be bounded. For continuous-time multi-agent systems, a distributed continuous algorithm is first introduced where the stepsizes and the convex constraint sets are both nonuniform. It is shown that all agents reach a consensus while minimizing the team objective function even when the constraint sets are unbounded. After that, the obtained results are extended to discrete-time multi-agent systems and then the case where each agent remains in a corresponding convex constraint set is studied. To ensure all agents to remain in a bounded region, a switching mechanism is introduced in the algorithms. It is shown that the distributed optimization problems can be solved, even though the discretization of the algorithms might deviate the convergence of the agents from the minimum of the objective functions. Finally, numerical examples are included to show the obtained theoretical results.Comment: 11 pages, 3figure

    Distributed Mirror Descent with Integral Feedback: Asymptotic Convergence Analysis of Continuous-time Dynamics

    Full text link
    This work addresses distributed optimization, where a network of agents wants to minimize a global strongly convex objective function. The global function can be written as a sum of local convex functions, each of which is associated with an agent. We propose a continuous-time distributed mirror descent algorithm that uses purely local information to converge to the global optimum. Unlike previous work on distributed mirror descent, we incorporate an integral feedback in the update, allowing the algorithm to converge with a constant step-size when discretized. We establish the asymptotic convergence of the algorithm using Lyapunov stability analysis. We further illustrate numerical experiments that verify the advantage of adopting integral feedback for improving the convergence rate of distributed mirror descent
    corecore