221 research outputs found

    Distributed computing of efficient routing schemes in generalized chordal graphs

    Get PDF
    International audienceEfficient algorithms for computing routing tables should take advantage of the particular properties arising in large scale networks. Two of them are of particular interest: low (logarithmic) diameter and high clustering coefficient. High clustering coefficient implies the existence of few large induced cycles. Considering this fact, we propose here a routing scheme that computes short routes in the class of kk-chordal graphs, i.e., graphs with no induced cycles of length more than kk. In the class of kk-chordal graphs, our routing scheme achieves an additive stretch of at most k1k-1, i.e., for all pairs of nodes, the length of the route never exceeds their distance plus k1k-1. In order to compute the routing tables of any nn-node graph with diameter DD we propose a distributed algorithm which uses messages of size O(logn)O(\log n) and takes O(D)O(D) time. The corresponding routing scheme achieves the stretch of k1k-1 on kk-chordal graphs. We then propose a routing scheme that achieves a better additive stretch of 11 in chordal graphs (notice that chordal graphs are 3-chordal graphs). In this case, the distributed computation of the routing tables takes O(min{ΔD,n})O(\min\{\Delta D , n\}) time, where Δ\Delta is the maximum degree of the graph. Our routing schemes use addresses of size logn\log n bits and local memory of size 2(d1)logn2(d-1) \log n bits per node of degree dd

    Network Topology Mapping from Partial Virtual Coordinates and Graph Geodesics

    Full text link
    For many important network types (e.g., sensor networks in complex harsh environments and social networks) physical coordinate systems (e.g., Cartesian), and physical distances (e.g., Euclidean), are either difficult to discern or inapplicable. Accordingly, coordinate systems and characterizations based on hop-distance measurements, such as Topology Preserving Maps (TPMs) and Virtual-Coordinate (VC) systems are attractive alternatives to Cartesian coordinates for many network algorithms. Herein, we present an approach to recover geometric and topological properties of a network with a small set of distance measurements. In particular, our approach is a combination of shortest path (often called geodesic) recovery concepts and low-rank matrix completion, generalized to the case of hop-distances in graphs. Results for sensor networks embedded in 2-D and 3-D spaces, as well as a social networks, indicates that the method can accurately capture the network connectivity with a small set of measurements. TPM generation can now also be based on various context appropriate measurements or VC systems, as long as they characterize different nodes by distances to small sets of random nodes (instead of a set of global anchors). The proposed method is a significant generalization that allows the topology to be extracted from a random set of graph shortest paths, making it applicable in contexts such as social networks where VC generation may not be possible.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1712.1006

    On Efficient Distributed Construction of Near Optimal Routing Schemes

    Full text link
    Given a distributed network represented by a weighted undirected graph G=(V,E)G=(V,E) on nn vertices, and a parameter kk, we devise a distributed algorithm that computes a routing scheme in (n1/2+1/k+D)no(1)(n^{1/2+1/k}+D)\cdot n^{o(1)} rounds, where DD is the hop-diameter of the network. The running time matches the lower bound of Ω~(n1/2+D)\tilde{\Omega}(n^{1/2}+D) rounds (which holds for any scheme with polynomial stretch), up to lower order terms. The routing tables are of size O~(n1/k)\tilde{O}(n^{1/k}), the labels are of size O(klog2n)O(k\log^2n), and every packet is routed on a path suffering stretch at most 4k5+o(1)4k-5+o(1). Our construction nearly matches the state-of-the-art for routing schemes built in a centralized sequential manner. The previous best algorithms for building routing tables in a distributed small messages model were by \cite[STOC 2013]{LP13} and \cite[PODC 2015]{LP15}. The former has similar properties but suffers from substantially larger routing tables of size O(n1/2+1/k)O(n^{1/2+1/k}), while the latter has sub-optimal running time of O~(min{(nD)1/2n1/k,n2/3+2/(3k)+D})\tilde{O}(\min\{(nD)^{1/2}\cdot n^{1/k},n^{2/3+2/(3k)}+D\})

    Slimness of graphs

    Full text link
    Slimness of a graph measures the local deviation of its metric from a tree metric. In a graph G=(V,E)G=(V,E), a geodesic triangle (x,y,z)\bigtriangleup(x,y,z) with x,y,zVx, y, z\in V is the union P(x,y)P(x,z)P(y,z)P(x,y) \cup P(x,z) \cup P(y,z) of three shortest paths connecting these vertices. A geodesic triangle (x,y,z)\bigtriangleup(x,y,z) is called δ\delta-slim if for any vertex uVu\in V on any side P(x,y)P(x,y) the distance from uu to P(x,z)P(y,z)P(x,z) \cup P(y,z) is at most δ\delta, i.e. each path is contained in the union of the δ\delta-neighborhoods of two others. A graph GG is called δ\delta-slim, if all geodesic triangles in GG are δ\delta-slim. The smallest value δ\delta for which GG is δ\delta-slim is called the slimness of GG. In this paper, using the layering partition technique, we obtain sharp bounds on slimness of such families of graphs as (1) graphs with cluster-diameter Δ(G)\Delta(G) of a layering partition of GG, (2) graphs with tree-length λ\lambda, (3) graphs with tree-breadth ρ\rho, (4) kk-chordal graphs, AT-free graphs and HHD-free graphs. Additionally, we show that the slimness of every 4-chordal graph is at most 2 and characterize those 4-chordal graphs for which the slimness of every of its induced subgraph is at most 1

    Tuchola County Broadband Network (TCBN)

    Get PDF
    Abstract In the paper the designing project (plan) of Tuchola City broadband IP optical network has been presented. The extended version of network plan constitute technical part of network Feasibility Study, that it is expected to be implemented in Tuchola and be financed from European Regional Development Funds. The network plan presented in the paper contains both topological structure of fiber optic network as well as the active equipment for the network. In the project described in the paper it has been suggested to use Modular Cable System - MCS for passive infrastructure and Metro Ethernet technology for active equipment. The presented solution provides low cost of construction (CAPEX), ease of implementation of the network and low operating cost (OPEX). Moreover the parameters of installed Metro Ethernet switches in the network guarantee the scalability of the network for at least 10 years.</jats:p

    k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth

    Get PDF
    International audienceCops and robber games, introduced by Winkler and Nowakowski [41] and independently defined by Quilliot [43], concern a team of cops that must capture a robber moving in a graph. We consider the class of k-chordal graphs, i.e., graphs with no induced (chordless) cycle of length greater than k, k ≥ 3. We prove that k − 1 cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new structural decomposition for a graph class including k-chordal graphs. We present a polynomial-time algorithm that, given a graph G and k ≥ 3, either returns an induced cycle larger than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most k − 1 vertices. This allows us to prove that any k-chordal graph with maximum degree ∆ has treewidth at most (k −1)(∆ −1) +2, improving the O(∆ (∆ −1) k−3) bound of Bodlaender and Thilikos (1997). Moreover, any graph admitting such a tree-decomposition has small hyperbolicity. As an application, for any n-vertex graph admitting such a tree-decomposition, we propose a compact routing scheme using routing tables, addresses and headers of size O(k log ∆ + log n) bits and achieving an additive stretch of O(k log ∆). As far as we know, this is the first routing scheme with O(k log ∆ + log n)-routing tables and small additive stretch for k-chordal graphs

    simulating routing schemes on large-scale topologies

    Get PDF
    The expansion of the Internet routing system results in a number of research challenges, in particular, the Border Gateway Protocol (BGP) starts to show its limits a.o. in terms of the number of routing table entries it can dynamically process and control. Dynamic routing protocols showing better scaling properties are thus under investigation. However, because deploying under-development routing protocols on the Internet is not practicable at a large-scale (due to the size of the Internet topology), simulation is an unavoidable step to validate the properties of a newly proposed routing scheme. Unfortunately, the simulation of inter-domain routing protocols over large networks (order of tens of thousands of nodes) poses real challenges due to the limited memory and computational power that computers impose. This paper presents the Dynamic Routing Model simulator \drmsim which addresses the specific problem of large-scale simulations of (inter-domain) routing models on large networks. The motivation for developing a new simulator lies in the limitation of existing simulation tools in terms of the number of nodes they can handle and in the models they propose
    corecore