8,860 research outputs found

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Energy Complexity of Distance Computation in Multi-hop Networks

    Full text link
    Energy efficiency is a critical issue for wireless devices operated under stringent power constraint (e.g., battery). Following prior works, we measure the energy cost of a device by its transceiver usage, and define the energy complexity of an algorithm as the maximum number of time slots a device transmits or listens, over all devices. In a recent paper of Chang et al. (PODC 2018), it was shown that broadcasting in a multi-hop network of unknown topology can be done in polylogn\text{poly} \log n energy. In this paper, we continue this line of research, and investigate the energy complexity of other fundamental graph problems in multi-hop networks. Our results are summarized as follows. 1. To avoid spending Ω(D)\Omega(D) energy, the broadcasting protocols of Chang et al. (PODC 2018) do not send the message along a BFS tree, and it is open whether BFS could be computed in o(D)o(D) energy, for sufficiently large DD. In this paper we devise an algorithm that attains O~(n)\tilde{O}(\sqrt{n}) energy cost. 2. We show that the framework of the Ω(n){\Omega}(n) round lower bound proof for computing diameter in CONGEST of Abboud et al. (DISC 2017) can be adapted to give an Ω~(n)\tilde{\Omega}(n) energy lower bound in the wireless network model (with no message size constraint), and this lower bound applies to O(logn)O(\log n)-arboricity graphs. From the upper bound side, we show that the energy complexity of O~(n)\tilde{O}(\sqrt{n}) can be attained for bounded-genus graphs (which includes planar graphs). 3. Our upper bounds for computing diameter can be extended to other graph problems. We show that exact global minimum cut or approximate ss--tt minimum cut can be computed in O~(n)\tilde{O}(\sqrt{n}) energy for bounded-genus graphs

    Node counting in wireless ad-hoc networks

    Get PDF
    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct neighbors of each node. The algorithms are simulated, allowing comparison of their performance
    corecore