1,302 research outputs found

    Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server

    Get PDF
    This paper makes two contributions to Bayesian machine learning algorithms. Firstly, we propose stochastic natural gradient expectation propagation (SNEP), a novel alternative to expectation propagation (EP), a popular variational inference algorithm. SNEP is a black box variational algorithm, in that it does not require any simplifying assumptions on the distribution of interest, beyond the existence of some Monte Carlo sampler for estimating the moments of the EP tilted distributions. Further, as opposed to EP which has no guarantee of convergence, SNEP can be shown to be convergent, even when using Monte Carlo moment estimates. Secondly, we propose a novel architecture for distributed Bayesian learning which we call the posterior server. The posterior server allows scalable and robust Bayesian learning in cases where a data set is stored in a distributed manner across a cluster, with each compute node containing a disjoint subset of data. An independent Monte Carlo sampler is run on each compute node, with direct access only to the local data subset, but which targets an approximation to the global posterior distribution given all data across the whole cluster. This is achieved by using a distributed asynchronous implementation of SNEP to pass messages across the cluster. We demonstrate SNEP and the posterior server on distributed Bayesian learning of logistic regression and neural networks. Keywords: Distributed Learning, Large Scale Learning, Deep Learning, Bayesian Learn- ing, Variational Inference, Expectation Propagation, Stochastic Approximation, Natural Gradient, Markov chain Monte Carlo, Parameter Server, Posterior Server.Comment: 37 pages, 7 figure

    Exploiting the Statistics of Learning and Inference

    Full text link
    When dealing with datasets containing a billion instances or with simulations that require a supercomputer to execute, computational resources become part of the equation. We can improve the efficiency of learning and inference by exploiting their inherent statistical nature. We propose algorithms that exploit the redundancy of data relative to a model by subsampling data-cases for every update and reasoning about the uncertainty created in this process. In the context of learning we propose to test for the probability that a stochastically estimated gradient points more than 180 degrees in the wrong direction. In the context of MCMC sampling we use stochastic gradients to improve the efficiency of MCMC updates, and hypothesis tests based on adaptive mini-batches to decide whether to accept or reject a proposed parameter update. Finally, we argue that in the context of likelihood free MCMC one needs to store all the information revealed by all simulations, for instance in a Gaussian process. We conclude that Bayesian methods will remain to play a crucial role in the era of big data and big simulations, but only if we overcome a number of computational challenges.Comment: Proceedings of the NIPS workshop on "Probabilistic Models for Big Data

    PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

    Full text link
    Generalized linear models (GLMs) -- such as logistic regression, Poisson regression, and robust regression -- provide interpretable models for diverse data types. Probabilistic approaches, particularly Bayesian ones, allow coherent estimates of uncertainty, incorporation of prior information, and sharing of power across experiments via hierarchical models. In practice, however, the approximate Bayesian methods necessary for inference have either failed to scale to large data sets or failed to provide theoretical guarantees on the quality of inference. We propose a new approach based on constructing polynomial approximate sufficient statistics for GLMs (PASS-GLM). We demonstrate that our method admits a simple algorithm as well as trivial streaming and distributed extensions that do not compound error across computations. We provide theoretical guarantees on the quality of point (MAP) estimates, the approximate posterior, and posterior mean and uncertainty estimates. We validate our approach empirically in the case of logistic regression using a quadratic approximation and show competitive performance with stochastic gradient descent, MCMC, and the Laplace approximation in terms of speed and multiple measures of accuracy -- including on an advertising data set with 40 million data points and 20,000 covariates.Comment: In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017). v3: corrected typos in Appendix

    Federated Variational Inference Methods for Structured Latent Variable Models

    Full text link
    Federated learning methods enable model training across distributed data sources without data leaving their original locations and have gained increasing interest in various fields. However, existing approaches are limited, excluding many structured probabilistic models. We present a general and elegant solution based on structured variational inference, widely used in Bayesian machine learning, adapted for the federated setting. Additionally, we provide a communication-efficient variant analogous to the canonical FedAvg algorithm. The proposed algorithms' effectiveness is demonstrated, and their performance is compared with hierarchical Bayesian neural networks and topic models
    • …
    corecore