382 research outputs found

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB

    Interference modelling and management for cognitive radio networks

    Get PDF
    Radio spectrum is becoming increasingly scarce as more and more devices go wireless. Meanwhile, studies indicate that the assigned spectrum is not fully utilised. Cognitive radio (CR) technology is envisioned to be a promising solution to address the imbalance between spectrum scarcity and spectrum underutilisation. It improves the spectrum utilisation by reusing the unused or underutilised spectrum owned by incumbent systems (primary systems). With the introduction of CR networks, two types of interference originating from CR networks are introduced. They are the interference from CR to primary networks (CR-primary interference) and the interference among spectrum-sharing CR nodes (CR-CR interference). The interference should be well controlled and managed in order not to jeopardise the operation of the primary network and to improve the performance of CR systems. This thesis investigates the interference in CR networks by modelling and mitigating the CR-primary interference and analysing the CR-CR interference channels. Firstly, the CR-primary interference is modelled for multiple CR nodes sharing the spectrum with the primary system. The probability density functions of CR-primary interference are derived for CR networks adopting different interference management schemes. The relationship between CR operating parameters and the resulting CRprimary interference is investigated. It sheds light on the deployment of CR networks to better protect the primary system. Secondly, various interference mitigation techniques that are applicable to CR networks are reviewed. Two novel precoding schemes for CR multiple-input multipleoutput (MIMO) systems are proposed to mitigate the CR-primary interference and maximise the CR throughput. To further reduce the CR-primary interference, we also approach interference mitigation from a cross-layer perspective by jointly considering channel allocation in the media access control layer and precoding in the physical layer of CR MIMO systems. Finally, we analyse the underlying interference channels among spectrum-sharing CR users when they interfere with each other. The Pareto rate region for multi-user MIMO interference systems is characterised. Various rate region convexification schemes are examined to convexify the rate region. Then, game theory is applied to the interference system to coordinate the operation of each CR user. Nash bargaining over MIMO interference systems is characterised as well. The research presented in this thesis reveals the impact of CR operation on the resulting CR-primary network, how to mitigate the CR-primary interference and how to coordinate the spectrum-sharing CR users. It forms the fundamental basis for interference management in CR systems and consequently gives insights into the design and deployment of CR networks

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore