44,766 research outputs found

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Performance evaluation of a distributed integrative architecture for robotics

    Get PDF
    The eld of robotics employs a vast amount of coupled sub-systems. These need to interact cooperatively and concurrently in order to yield the desired results. Some hybrid algorithms also require intensive cooperative interactions internally. The architecture proposed lends it- self amenable to problem domains that require rigorous calculations that are usually impeded by the capacity of a single machine, and incompatibility issues between software computing elements. Implementations are abstracted away from the physical hardware for ease of de- velopment and competition in simulation leagues. Monolithic developments are complex, and the desire for decoupled architectures arises. Decoupling also lowers the threshold for using distributed and parallel resources. The ability to re-use and re-combine components on de- mand, therefore is essential, while maintaining the necessary degree of interaction. For this reason we propose to build software components on top of a Service Oriented Architecture (SOA) using Web Services. An additional bene t is platform independence regarding both the operating system and the implementation language. The robot soccer platform as well as the associated simulation leagues are the target domain for the development. Furthermore are machine vision and remote process control related portions of the architecture currently in development and testing for industrial environments. We provide numerical data based on the Python frameworks ZSI and SOAPpy undermining the suitability of this approach for the eld of robotics. Response times of signi cantly less than 50 ms even for fully interpreted, dynamic languages provides hard information showing the feasibility of Web Services based SOAs even in time critical robotic applications
    corecore