51,464 research outputs found

    Tensor-Based Link Prediction in Intermittently Connected Wireless Networks

    Full text link
    Through several studies, it has been highlighted that mobility patterns in mobile networks are driven by human behaviors. This effect has been particularly observed in intermittently connected networks like DTN (Delay Tolerant Networks). Given that common social intentions generate similar human behavior, it is relevant to exploit this knowledge in the network protocols design, e.g. to identify the closeness degree between two nodes. In this paper, we propose a temporal link prediction technique for DTN which quantifies the behavior similarity between each pair of nodes and makes use of it to predict future links. Our prediction method keeps track of the spatio-temporal aspects of nodes behaviors organized as a third-order tensor that aims to records the evolution of the network topology. After collapsing the tensor information, we compute the degree of similarity for each pair of nodes using the Katz measure. This metric gives us an indication on the link occurrence between two nodes relying on their closeness. We show the efficiency of this method by applying it on three mobility traces: two real traces and one synthetic trace. Through several simulations, we demonstrate the effectiveness of the technique regarding another approach based on a similarity metric used in DTN. The validity of this method is proven when the computation of score is made in a distributed way (i.e. with local information). We attest that the tensor-based technique is effective for temporal link prediction applied to the intermittently connected networks. Furthermore, we think that this technique can go beyond the realm of DTN and we believe this can be further applied on every case of figure in which there is a need to derive the underlying social structure of a network of mobile users.Comment: 13 pages, 9 figures, 8 tables, submitted to the International Journal of Computer and Telecommunications Networking (COMNET

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Scalable and interpretable product recommendations via overlapping co-clustering

    Full text link
    We consider the problem of generating interpretable recommendations by identifying overlapping co-clusters of clients and products, based only on positive or implicit feedback. Our approach is applicable on very large datasets because it exhibits almost linear complexity in the input examples and the number of co-clusters. We show, both on real industrial data and on publicly available datasets, that the recommendation accuracy of our algorithm is competitive to that of state-of-art matrix factorization techniques. In addition, our technique has the advantage of offering recommendations that are textually and visually interpretable. Finally, we examine how to implement our technique efficiently on Graphical Processing Units (GPUs).Comment: In IEEE International Conference on Data Engineering (ICDE) 201

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case
    corecore