25,337 research outputs found
Distorted Born diffraction tomography: limits and applications to inverse the ultrasonic field scattered by an non-circular infinite elastic tube
International audienceThis study focuses on the application of ultrasonic diffraction tomography to noncircular 2D-cylindrical objects immersed in an infinite fluid. The distorted Born iterative method used to solve the inverse scattering problem be longs to the class of algebraic reconstruction algorithms. This method was developed to increase the order of application of the Born approximation (in the case of weakly-contrasted media) to higher orders. This yields quantitative in formation about the scatterer, such as the speed of sound and the attenuation. Quantitative ultrasonic imaging techniques of this kind are of great potential value in fields such as medicine, under water acoustics and non destructive testing
Cross sections for electron impact excitation of the low-lying electron states of CO2
Distorted-wave cross sections for the excitation of eight low-lying excited states (1,3 Sigma u+, 1,3 Pi g, 1,3 Pi u and 1,3 Delta u) of CO2 by electrons in the 25 to 60 eV energy range are presented. The authors report both differential and integral cross sections
Electron impact excitation cross sections for carbon monoxide
The authors present distorted-wave cross sections for excitation of the A 1 Pi , a 3 Pi , a' 3 Sigma +, D 1 Delta and d 3 Delta states of CO by electrons in the 20 to 50 eV energy range. In these studies both the initial and final distorted waves are obtained in the static-exchange field of the ground electronic state. Differential and integral cross sections are presented and compared with available experimental data and with other calculations. The calculated differential cross sections for the A 1 Pi and a 3 Pi states agree poorly in magnitude, but better in shape, with available experimental data. In general the distorted-wave cross sections differ substantially from those of plane-wave-type theories such as the Born-Ochkur-Rudge approximation
Microwave imaging techniques for biomedical applications
Microwaves have been considered for medical applications involving the detection of organ movements and changes in tissue water content. More particularly cardiopulmonary interrogation via microwaves has resulted in various sensors monitoring ventricular volume change or movement, arterial wall motion, respiratory movements, pulmonary oedema, etc. In all these applications, microwave sensors perform local measurements and need to be displaced for obtaining an image reproducing the spatial variations of a given quantity. Recently, advances in the area of inverse scattering theory and microwave technology have made possible the development of microwave imaging and tomographic instruments. This paper provides a review of such equipment developed at Suplec and UPC Barcelona, within the frame of successive French-Spanish PICASSO cooperation programs. It reports the most significant results and gives some perspectives for future developments. Firstly, a brief historical survey is given. Then, both technological and numerical aspects are considered. The results of preliminary pre-clinical assessments and in-lab experiments allow to illustrate the capabilities of the existing equipment, as well as its difficulty in dealing with clinical situations. Finally, some remarks on the expected development of microwave imaging techniques for biomedical applications are given.Peer ReviewedPostprint (published version
Remote sensing of earth terrain
Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others
Remote sensing of earth terrain
In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach
Use of specific Green's functions for solving direct problems involving a heterogeneous rigid frame porous medium slab solicited by acoustic waves
A domain integral method employing a specific Green's function (i.e.,
incorporating some features of the global problem of wave propagation in an
inhomogeneous medium) is developed for solving direct and inverse scattering
problems relative to slab-like macroscopically inhomogeneous porous obstacles.
It is shown how to numerically solve such problems, involving both
spatially-varying density and compressibility, by means of an iterative scheme
initialized with a Born approximation. A numerical solution is obtained for a
canonical problem involving a two-layer slab.Comment: submitted to Math.Meth.Appl.Sc
- …
