1,320 research outputs found

    The Influence of Social Priming on Speech Perception

    Get PDF
    Speech perception relies on auditory, visual, and motor cues and has been historically difficult to model, partially due to this multimodality. One of the current models is the Fuzzy Logic Model of Perception (FLMP), which suggests that if one of these types of speech mode is altered, the perception of that speech signal should be altered in a quantifiable and predictable way. The current study uses social priming to activate the schema of blindness in order to reduce reliance of visual cues of syllables with a visually identical pair. According to the FLMP, by lowering reliance on visual cues, visual confusion should also be reduced, allowing the visually confusable syllables to be identified more quickly. Although no main effect of priming was discovered, some individual syllables showed the expected facilitation while others showed inhibition. These results suggest that there is an effect of social priming on speech perception, despite the opposing reactions between syllables. Further research should use a similar kind of social priming to determine which syllables have more acoustically salient features and which have more visually salient features

    A Likelihood-Ratio Based Forensic Voice Comparison in Standard Thai

    Get PDF
    This research uses a likelihood ratio (LR) framework to assess the discriminatory power of a range of acoustic parameters extracted from speech samples produced by male speakers of Standard Thai. The thesis aims to answer two main questions: 1) to what extent the tested linguistic-phonetic segments of Standard Thai perform in forensic voice comparison (FVC); and 2) how such linguistic-phonetic segments are profitably combined through logistic regression using the FoCal Toolkit (Brümmer, 2007). The segments focused on in this study are the four consonants /s, ʨh, n, m/ and the two diphthongs [ɔi, ai]. First of all, using the alveolar fricative /s/, two different sets of features were compared in terms of their performance in FVC. The first comprised the spectrum-based distributional features of four spectral moments, namely mean, variance, skew and kurtosis; the second consisted of the coefficients of the Discrete Cosine Transform (DCTs) applied to a spectrum. As DCTs were found to perform better, they were subsequently used to model the consonant spectrum of the remaining consonants. The consonant spectrum was extracted at the center point of the /s, ʨh, n, m/ consonants with a Hamming window of 31.25 msec. For the diphthongs [ɔi] - [nɔi L] and [ai] - [mai HL], the cubic polynomials fitted to the F2 and F1-F3 formants were tested separately. The quadratic polynomials fitted to the tonal F0 contours of [ɔi] - [nɔi L] and [ai] - [mai HL] were tested as well. Long-term F0 distribution (LTF0) was also trialed. The results show the promising discriminatory power of the Standard Thai acoustic features and segments tested in this thesis. The main findings are as follows. 1. The fricative /s/ performed better with the DCTs (Cllr = 0.70) than with the spectral moments (Cllr = 0.92). 2. The nasals /n, m/ (Cllr = 0.47) performed better than the affricate /tɕh/ (Cllr = 0.54) and the fricative /s/ (Cllr = 0.70) when their DCT coefficients were parameterized. 3. F1-F3 trajectories (Cllr = 0.42 and Cllr = 0.49) outperformed F2 trajectory (Cllr = 0.69 and Cllr = 0.67) for both diphthongs [ɔi] and [ai]. 4. F1-F3 trajectories of the diphthong [ɔi] (Cllr = 0.42) outperformed those of [ai] (Cllr = 0.49). 5. Tonal F0 (Cllr = 0.52) outperformed LTF0 (Cllr = 0.74). 6. Overall, better results were obtained when DCTs of /n/ - [na: HL] and /n/ - [nɔi L] were fused. (Cllr = 0.40 with the largest consistent-with-fact SSLog10LR = 2.53). In light of the findings, we can conclude that Standard Thai is generally amenable to FVC, especially when linguistic-phonetic segments are being combined; it is recommended that the latter procedure be followed when dealing with forensically realistic casework

    Tone and intonation: introductory notes and practical recommendations

    Get PDF
    International audienceThe present article aims to propose a simple introduction to the topics of (i) lexical tone, (ii) intonation, and (iii) tone-intonation interactions, with practical recommendations for students. It builds on the authors' observations on various languages, tonal and non-tonal; much of the evidence reviewed concerns tonal languages of Asia. With a view to providing beginners with an adequate methodological apparatus for studying tone and intonation, the present notes emphasize two salient dimensions of linguistic diversity. The first is the nature of the lexical tones: we review the classical distinction between (i) contour tones that can be analyzed into sequences of level tones, and (ii) contour tones that are non-decomposable (phonetically complex). A second dimension of diversity is the presence or absence of intonational tones: tones of intonational origin that are formally identical with lexical (and morphological) tones

    Audio-Visual Speech Recognition using Red Exclusion an Neural Networks

    Get PDF
    PO BOX Q534,QVB POST OFFICE, SYDNEY, AUSTRALIA, 123

    The Role of Accent in Popular Music: An Interdisciplinary Approach

    Get PDF
    In the thirty years that have passed since Peter Trudgill first published his study of British pop-song pronunciation, and fifteen years since Paul Simpson published his follow-up study of accents in pop and rock singing (1999), there have been several changes in the way linguists approach the sociolinguistics of singing. These changes include Franz Andres Morissey's introduction of sonority as a factor behind choosing particular phonological features, and the ongoing and evolving criticism of Trudgill's original assertion that singers were (and possibly still are) trying to 'imitate' Americans. The present study argues that existing theories are insufficient, and proposes a new framework for dealing with phonological choice in song, centred around three separate but unavoidably interrelated values that influence style choice – aesthetic, sonority, and indexicality. Unlike many related studies, it places emphasis on the interdisciplinary nature of the subject, drawing upon the work of musicologists, philosophers and linguists, in an attempt to bring a fresh perspective on the phenomenon. Special attention is given to the notion that singers use accents to create (or be appropriate to) a particular aesthetic. The view is taken that music scenes act as unique speech communities that possess both socially and musically derived linguistic norms that all members accept (both performers and audience), but only few actively utilise in their language use (the singers)

    Chinese Tones: Can You Listen With Your Eyes?:The Influence of Visual Information on Auditory Perception of Chinese Tones

    Get PDF
    CHINESE TONES: CAN YOU LISTEN WITH YOUR EYES? The Influence of Visual Information on Auditory Perception of Chinese Tones YUEQIAO HAN Summary Considering the fact that more than half of the languages spoken in the world (60%-70%) are so-called tone languages (Yip, 2002), and tone is notoriously difficult to learn for westerners, this dissertation focused on tone perception in Mandarin Chinese by tone-naïve speakers. Moreover, it has been shown that speech perception is more than just an auditory phenomenon, especially in situations when the speaker’s face is visible. Therefore, the aim of this dissertation is to also study the value of visual information (over and above that of acoustic information) in Mandarin tone perception for tone-naïve perceivers, in combination with other contextual (such as speaking style) and individual factors (such as musical background). Consequently, this dissertation assesses the relative strength of acoustic and visual information in tone perception and tone classification. In the first two empirical and exploratory studies in Chapter 2 and 3 , we set out to investigate to what extent tone-naïve perceivers are able to identify Mandarin Chinese tones in isolated words, and whether or not they can benefit from (seeing) the speakers’ face, and what the contribution is of a hyperarticulated speaking style, and/or their own musical experience. Respectively, in Chapter 2 we investigated the effect of visual cues (comparing audio-only with audio-visual presentations) and speaking style (comparing a natural speaking style with a teaching speaking style) on the perception of Mandarin tones by tone-naïve listeners, looking both at the relative strength of these two factors and their possible interactions; Chapter 3 was concerned with the effects of musicality of the participants (combined with modality) on Mandarin tone perception. In both of these studies, a Mandarin Chinese tone identification experiment was conducted: native speakers of a non-tonal language were asked to distinguish Mandarin Chinese tones based on audio (-only) or video (audio-visual) materials. In order to include variations, the experimental stimuli were recorded using four different speakers in imagined natural and teaching speaking scenarios. The proportion of correct responses (and average reaction times) of the participants were reported. The tone identification experiment presented in Chapter 2 showed that the video conditions (audio-visual natural and audio-visual teaching) resulted in an overall higher accuracy in tone perception than the auditory-only conditions (audio-only natural and audio-only teaching), but no better performance was observed in the audio-visual conditions in terms of reaction time, compared to the auditory-only conditions. Teaching style turned out to make no difference on the speed or accuracy of Mandarin tone perception (as compared to a natural speaking style). Further on, we presented the same experimental materials and procedure in Chapter 3 , but now with musicians and non-musicians as participants. The Goldsmith Musical Sophistication Index (Gold-MSI) was used to assess the musical aptitude of the participants. The data showed that overall, musicians outperformed non-musicians in the tone identification task in both auditory-visual and auditory-only conditions. Both groups identified tones more accurately in the auditory-visual conditions than in the auditory-only conditions. These results provided further evidence for the view that the availability of visual cues along with auditory information is useful for people who have no knowledge of Mandarin Chinese tones when they need to learn to identify these tones. Out of all the musical skills measured by Gold-MSI, the amount of musical training was the only predictor that had an impact on the accuracy of Mandarin tone perception. These findings suggest that learning to perceive Mandarin tones benefits from musical expertise, and visual information can facilitate Mandarin tone identification, but mainly for tone-naïve non-musicians. In addition, performance differed by tone: musicality improves accuracy for every tone; some tones are easier to identify than others: in particular, the identification of tone 3 (a low-falling-rising) proved to be the easiest, while tone 4 (a high-falling tone) was the most difficult to identify for all participants. The results of the first two experiments presented in chapters 2 and 3 showed that adding visual cues to clear auditory information facilitated the tone identification for tone-naïve perceivers (there is a significantly higher accuracy in audio-visual condition(s) than in auditory-only condition(s)). This visual facilitation was unaffected by the presence of (hyperarticulated) speaking style or the musical skill of the participants. Moreover, variations in speakers and tones had effects on the accurate identification of Mandarin tones by tone-naïve perceivers. In Chapter 4 , we compared the relative contribution of auditory and visual information during Mandarin Chinese tone perception. More specifically, we aimed to answer two questions: firstly, whether or not there is audio-visual integration at the tone level (i.e., we explored perceptual fusion between auditory and visual information). Secondly, we studied how visual information affects tone perception for native speakers and non-native (tone-naïve) speakers. To do this, we constructed various tone combinations of congruent (e.g., an auditory tone 1 paired with a visual tone 1, written as AxVx) and incongruent (e.g., an auditory tone 1 paired with a visual tone 2, written as AxVy) auditory-visual materials and presented them to native speakers of Mandarin Chinese and speakers of tone-naïve languages. Accuracy, defined as the percentage correct identification of a tone based on its auditory realization, was reported. When comparing the relative contribution of auditory and visual information during Mandarin Chinese tone perception with congruent and incongruent auditory and visual Chinese material for native speakers of Chinese and non-tonal languages, we found that visual information did not significantly contribute to the tone identification for native speakers of Mandarin Chinese. When there is a discrepancy between visual cues and acoustic information, (native and tone-naïve) participants tend to rely more on the auditory input than on the visual cues. Unlike the native speakers of Mandarin Chinese, tone-naïve participants were significantly influenced by the visual information during their auditory-visual integration, and they identified tones more accurately in congruent stimuli than in incongruent stimuli. In line with our previous work, the tone confusion matrix showed that tone identification varies with individual tones, with tone 3 (the low-dipping tone) being the easiest one to identify, whereas tone 4 (the high-falling tone) was the most difficult one. The results did not show evidence for auditory-visual integration among native participants, while visual information was helpful for tone-naïve participants. However, even for this group, visual information only marginally increased the accuracy in the tone identification task, and this increase depended on the tone in question. Chapter 5 is another chapter that zooms in on the relative strength of auditory and visual information for tone-naïve perceivers, but from the aspect of tone classification. In this chapter, we studied the acoustic and visual features of the tones produced by native speakers of Mandarin Chinese. Computational models based on acoustic features, visual features and acoustic-visual features were constructed to automatically classify Mandarin tones. Moreover, this study examined what perceivers pick up (perception) from what a speaker does (production, facial expression) by studying both production and perception. To be more specific, this chapter set out to answer: (1) which acoustic and visual features of tones produced by native speakers could be used to automatically classify Mandarin tones. Furthermore, (2) whether or not the features used in tone production are similar to or different from the ones that have cue value for tone-naïve perceivers when they categorize tones; and (3) whether and how visual information (i.e., facial expression and facial pose) contributes to the classification of Mandarin tones over and above the information provided by the acoustic signal. To address these questions, the stimuli that had been recorded (and described in chapter 2) and the response data that had been collected (and reported on in chapter 3) were used. Basic acoustic and visual features were extracted. Based on them, we used Random Forest classification to identify the most important acoustic and visual features for classifying the tones. The classifiers were trained on produced tone classification (given a set of auditory and visual features, predict the produced tone) and on perceived/responded tone classification (given a set of features, predict the corresponding tone as identified by the participant). The results showed that acoustic features outperformed visual features for tone classification, both for the classification of the produced and the perceived tone. However, tone-naïve perceivers did revert to the use of visual information in certain cases (when they gave wrong responses). So, visual information does not seem to play a significant role in native speakers’ tone production, but tone-naïve perceivers do sometimes consider visual information in their tone identification. These findings provided additional evidence that auditory information is more important than visual information in Mandarin tone perception and tone classification. Notably, visual features contributed to the participants’ erroneous performance. This suggests that visual information actually misled tone-naïve perceivers in their task of tone identification. To some extent, this is consistent with our claim that visual cues do influence tone perception. In addition, the ranking of the auditory features and visual features in tone perception showed that the factor perceiver (i.e., the participant) was responsible for the largest amount of variance explained in the responses by our tone-naïve participants, indicating the importance of individual differences in tone perception. To sum up, perceivers who do not have tone in their language background tend to make use of visual cues from the speakers’ faces for their perception of unknown tones (Mandarin Chinese in this dissertation), in addition to the auditory information they clearly also use. However, auditory cues are still the primary source they rely on. There is a consistent finding across the studies that the variations between tones, speakers and participants have an effect on the accuracy of tone identification for tone-naïve speaker

    Language variation: Papers on variation and change in the Sinosphere and in the Indosphere in honour of James A. Matisoff

    Get PDF

    Loan Phonology

    Get PDF
    For many different reasons, speakers borrow words from other languages to fill gaps in their own lexical inventory. The past ten years have been characterized by a great interest among phonologists in the issue of how the nativization of loanwords occurs. The general feeling is that loanword nativization provides a direct window for observing how acoustic cues are categorized in terms of the distinctive features relevant to the L1 phonological system as well as for studying L1 phonological processes in action and thus to the true synchronic phonology of L1. The collection of essays presented in this volume provides an overview of the complex issues phonologists face when investigating this phenomenon and, more generally, the ways in which unfamiliar sounds and sound sequences are adapted to converge with the native language’s sound pattern. This book is of interest to theoretical phonologists as well as to linguists interested in language contact phenomena
    corecore