1,170 research outputs found

    Direct Speech-to-Text Translation Models as Students of Text-to-Text Models

    Get PDF
    Direct speech-to-text translation (ST) is an emerging approach that consists in performing the ST task with a single neural model. Although this paradigm comes with the promise to outperform the traditional pipeline systems, its rise is still limited by the paucity of speech-translation paired corpora compared to the large amount of speech-transcript and parallel bilingual corpora available to train previous solutions. As such, the research community focused on techniques to transfer knowledge from automatic speech recognition (ASR) and machine translation (MT) models trained on huge datasets. In this paper, we extend and integrate our recent work (Gaido, Gangi, et al. 2020) analysing the best performing approach to transfer learning from MT, which is represented by knowledge distillation (KD) in sequence-to-sequence models. After the comparison of the different KD methods to understand which one is the most effective, we extend our previous analysis of the effects – both in terms of benefits and drawbacks – to different language pairs in high-resource conditions, ensuring the generalisability of our findings. Altogether, these extensions complement and complete our investigation on KD for speech translation leading to the following overall findings: i) the best training recipe involves a word-level KD training followed by a fine-tuning step on the ST task, ii) word-level KD from MT can be detrimental for gender translation and can lead to output truncation (though these problems are alleviated by the fine-tuning on the ST task), and iii) the quality of the ST student model strongly depends on the quality of the MT teacher model, although the correlation is not linear

    Contextualization Distillation from Large Language Model for Knowledge Graph Completion

    Full text link
    While textual information significantly enhances the performance of pre-trained language models (PLMs) in knowledge graph completion (KGC), the static and noisy nature of existing corpora collected from Wikipedia articles or synsets definitions often limits the potential of PLM-based KGC models. To surmount these challenges, we introduce the Contextualization Distillation strategy, a versatile plug-in-and-play approach compatible with both discriminative and generative KGC frameworks. Our method begins by instructing large language models (LLMs) to transform compact, structural triplets into context-rich segments. Subsequently, we introduce two tailored auxiliary tasks, reconstruction and contextualization, allowing smaller KGC models to assimilate insights from these enriched triplets. Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach, revealing consistent performance enhancements irrespective of underlying pipelines or architectures. Moreover, our analysis makes our method more explainable and provides insight into generating path selection, as well as the choosing of suitable distillation tasks. All the code and data in this work will be released at https://github.com/David-Li0406/Contextulization-DistillationComment: Accepted by EACL 2024 findings v3: add missing citation

    Knowledge Transfer from Pre-trained Language Models to Cif-based Speech Recognizers via Hierarchical Distillation

    Full text link
    Large-scale pre-trained language models (PLMs) have shown great potential in natural language processing tasks. Leveraging the capabilities of PLMs to enhance automatic speech recognition (ASR) systems has also emerged as a promising research direction. However, previous works may be limited by the inflexible structures of PLMs and the insufficient utilization of PLMs. To alleviate these problems, we propose the hierarchical knowledge distillation (HKD) on the continuous integrate-and-fire (CIF) based ASR models. To transfer knowledge from PLMs to the ASR models, HKD employs cross-modal knowledge distillation with contrastive loss at the acoustic level and knowledge distillation with regression loss at the linguistic level. Compared with the original CIF-based model, our method achieves 15% and 9% relative error rate reduction on the AISHELL-1 and LibriSpeech datasets, respectively.Comment: Accepted by INTERSPEECH 202

    Unsupervised Fact Verification by Language Model Distillation

    Full text link
    Unsupervised fact verification aims to verify a claim using evidence from a trustworthy knowledge base without any kind of data annotation. To address this challenge, algorithms must produce features for every claim that are both semantically meaningful, and compact enough to find a semantic alignment with the source information. In contrast to previous work, which tackled the alignment problem by learning over annotated corpora of claims and their corresponding labels, we propose SFAVEL (Self-supervised Fact Verification via Language Model Distillation), a novel unsupervised framework that leverages pre-trained language models to distil self-supervised features into high-quality claim-fact alignments without the need for annotations. This is enabled by a novel contrastive loss function that encourages features to attain high-quality claim and evidence alignments whilst preserving the semantic relationships across the corpora. Notably, we present results that achieve a new state-of-the-art on the standard FEVER fact verification benchmark (+8% accuracy) with linear evaluation

    Reducing Model Jitter: Stable Re-training of Semantic Parsers in Production Environments

    Full text link
    Retraining modern deep learning systems can lead to variations in model performance even when trained using the same data and hyper-parameters by simply using different random seeds. We call this phenomenon model jitter. This issue is often exacerbated in production settings, where models are retrained on noisy data. In this work we tackle the problem of stable retraining with a focus on conversational semantic parsers. We first quantify the model jitter problem by introducing the model agreement metric and showing the variation with dataset noise and model sizes. We then demonstrate the effectiveness of various jitter reduction techniques such as ensembling and distillation. Lastly, we discuss practical trade-offs between such techniques and show that co-distillation provides a sweet spot in terms of jitter reduction for semantic parsing systems with only a modest increase in resource usage.Comment: SIGDIAL 2022 Best Pape

    GripRank: Bridging the Gap between Retrieval and Generation via the Generative Knowledge Improved Passage Ranking

    Full text link
    Retrieval-enhanced text generation, which aims to leverage passages retrieved from a large passage corpus for delivering a proper answer given the input query, has shown remarkable progress on knowledge-intensive language tasks such as open-domain question answering and knowledge-enhanced dialogue generation. However, the retrieved passages are not ideal for guiding answer generation because of the discrepancy between retrieval and generation, i.e., the candidate passages are all treated equally during the retrieval procedure without considering their potential to generate the proper answers. This discrepancy makes a passage retriever deliver a sub-optimal collection of candidate passages to generate answers. In this paper, we propose the GeneRative Knowledge Improved Passage Ranking (GripRank) approach, addressing the above challenge by distilling knowledge from a generative passage estimator (GPE) to a passage ranker, where the GPE is a generative language model used to measure how likely the candidate passages can generate the proper answer. We realize the distillation procedure by teaching the passage ranker learning to rank the passages ordered by the GPE. Furthermore, we improve the distillation quality by devising a curriculum knowledge distillation mechanism, which allows the knowledge provided by the GPE can be progressively distilled to the ranker through an easy-to-hard curriculum, enabling the passage ranker to correctly recognize the provenance of the answer from many plausible candidates. We conduct extensive experiments on four datasets across three knowledge-intensive language tasks. Experimental results show advantages over the state-of-the-art methods for both passage ranking and answer generation on the KILT benchmark.Comment: 11 pages, 4 figure
    • …
    corecore