7 research outputs found

    Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine Translation

    Full text link
    We explore best practices for training small, memory efficient machine translation models with sequence-level knowledge distillation in the domain adaptation setting. While both domain adaptation and knowledge distillation are widely-used, their interaction remains little understood. Our large-scale empirical results in machine translation (on three language pairs with three domains each) suggest distilling twice for best performance: once using general-domain data and again using in-domain data with an adapted teacher.Comment: Accepted to WNGT 2020 Workshop at ACL 2020 Conference. Code is at http://github.com/mitchellgordon95/kd-au

    Self-Adaptive Training: beyond Empirical Risk Minimization

    Full text link
    We propose self-adaptive training---a new training algorithm that dynamically corrects problematic training labels by model predictions without incurring extra computational cost---to improve generalization of deep learning for potentially corrupted training data. This problem is crucial towards robustly learning from data that are corrupted by, e.g., label noises and out-of-distribution samples. The standard empirical risk minimization (ERM) for such data, however, may easily overfit noises and thus suffers from sub-optimal performance. In this paper, we observe that model predictions can substantially benefit the training process: self-adaptive training significantly improves generalization over ERM under various levels of noises, and mitigates the overfitting issue in both natural and adversarial training. We evaluate the error-capacity curve of self-adaptive training: the test error is monotonously decreasing w.r.t. model capacity. This is in sharp contrast to the recently-discovered double-descent phenomenon in ERM which might be a result of overfitting of noises. Experiments on CIFAR and ImageNet datasets verify the effectiveness of our approach in two applications: classification with label noise and selective classification. We release our code at https://github.com/LayneH/self-adaptive-training.Comment: To appear in NeurIPS 202

    Distilling Double Descent

    Full text link
    Distillation is the technique of training a "student" model based on examples that are labeled by a separate "teacher" model, which itself is trained on a labeled dataset. The most common explanations for why distillation "works" are predicated on the assumption that student is provided with \emph{soft} labels, \eg probabilities or confidences, from the teacher model. In this work, we show, that, even when the teacher model is highly overparameterized, and provides \emph{hard} labels, using a very large held-out unlabeled dataset to train the student model can result in a model that outperforms more "traditional" approaches. Our explanation for this phenomenon is based on recent work on "double descent". It has been observed that, once a model's complexity roughly exceeds the amount required to memorize the training data, increasing the complexity \emph{further} can, counterintuitively, result in \emph{better} generalization. Researchers have identified several settings in which it takes place, while others have made various attempts to explain it (thus far, with only partial success). In contrast, we avoid these questions, and instead seek to \emph{exploit} this phenomenon by demonstrating that a highly-overparameterized teacher can avoid overfitting via double descent, while a student trained on a larger independent dataset labeled by this teacher will avoid overfitting due to the size of its training set

    Distillation ≈\approx Early Stopping? Harvesting Dark Knowledge Utilizing Anisotropic Information Retrieval For Overparameterized Neural Network

    Full text link
    Distillation is a method to transfer knowledge from one model to another and often achieves higher accuracy with the same capacity. In this paper, we aim to provide a theoretical understanding on what mainly helps with the distillation. Our answer is "early stopping". Assuming that the teacher network is overparameterized, we argue that the teacher network is essentially harvesting dark knowledge from the data via early stopping. This can be justified by a new concept, {Anisotropic Information Retrieval (AIR)}, which means that the neural network tends to fit the informative information first and the non-informative information (including noise) later. Motivated by the recent development on theoretically analyzing overparameterized neural networks, we can characterize AIR by the eigenspace of the Neural Tangent Kernel(NTK). AIR facilities a new understanding of distillation. With that, we further utilize distillation to refine noisy labels. We propose a self-distillation algorithm to sequentially distill knowledge from the network in the previous training epoch to avoid memorizing the wrong labels. We also demonstrate, both theoretically and empirically, that self-distillation can benefit from more than just early stopping. Theoretically, we prove convergence of the proposed algorithm to the ground truth labels for randomly initialized overparameterized neural networks in terms of â„“2\ell_2 distance, while the previous result was on convergence in 00-11 loss. The theoretical result ensures the learned neural network enjoy a margin on the training data which leads to better generalization. Empirically, we achieve better testing accuracy and entirely avoid early stopping which makes the algorithm more user-friendly.Comment: Accepted by NeurIPS 2019 Workshop on Machine Learning with Guarantees. Submitted to other place

    Why distillation helps: a statistical perspective

    Full text link
    Knowledge distillation is a technique for improving the performance of a simple "student" model by replacing its one-hot training labels with a distribution over labels obtained from a complex "teacher" model. While this simple approach has proven widely effective, a basic question remains unresolved: why does distillation help? In this paper, we present a statistical perspective on distillation which addresses this question, and provides a novel connection to extreme multiclass retrieval techniques. Our core observation is that the teacher seeks to estimate the underlying (Bayes) class-probability function. Building on this, we establish a fundamental bias-variance tradeoff in the student's objective: this quantifies how approximate knowledge of these class-probabilities can significantly aid learning. Finally, we show how distillation complements existing negative mining techniques for extreme multiclass retrieval, and propose a unified objective which combines these ideas

    Self-Distillation Amplifies Regularization in Hilbert Space

    Full text link
    Knowledge distillation introduced in the deep learning context is a method to transfer knowledge from one architecture to another. In particular, when the architectures are identical, this is called self-distillation. The idea is to feed in predictions of the trained model as new target values for retraining (and iterate this loop possibly a few times). It has been empirically observed that the self-distilled model often achieves higher accuracy on held out data. Why this happens, however, has been a mystery: the self-distillation dynamics does not receive any new information about the task and solely evolves by looping over training. To the best of our knowledge, there is no rigorous understanding of why this happens. This work provides the first theoretical analysis of self-distillation. We focus on fitting a nonlinear function to training data, where the model space is Hilbert space and fitting is subject to L2 regularization in this function space. We show that self-distillation iterations modify regularization by progressively limiting the number of basis functions that can be used to represent the solution. This implies (as we also verify empirically) that while a few rounds of self-distillation may reduce over-fitting, further rounds may lead to under-fitting and thus worse performance

    When Does Preconditioning Help or Hurt Generalization?

    Full text link
    While second order optimizers such as natural gradient descent (NGD) often speed up optimization, their effect on generalization has been called into question. This work presents a more nuanced view on how the \textit{implicit bias} of first- and second-order methods affects the comparison of generalization properties. We provide an exact asymptotic bias-variance decomposition of the generalization error of overparameterized ridgeless regression under a general class of preconditioner P\boldsymbol{P}, and consider the inverse population Fisher information matrix (used in NGD) as a particular example. We determine the optimal P\boldsymbol{P} for both the bias and variance, and find that the relative generalization performance of different optimizers depends on the label noise and the "shape" of the signal (true parameters): when the labels are noisy, the model is misspecified, or the signal is misaligned with the features, NGD can achieve lower risk; conversely, GD generalizes better than NGD under clean labels, a well-specified model, or aligned signal. Based on this analysis, we discuss several approaches to manage the bias-variance tradeoff, and the potential benefit of interpolating between GD and NGD. We then extend our analysis to regression in the reproducing kernel Hilbert space and demonstrate that preconditioned GD can decrease the population risk faster than GD. Lastly, we empirically compare the generalization error of first- and second-order optimizers in neural network experiments, and observe robust trends matching our theoretical analysis.Comment: 42 page
    corecore