477 research outputs found

    Comprehensive Overview of Named Entity Recognition: Models, Domain-Specific Applications and Challenges

    Full text link
    In the domain of Natural Language Processing (NLP), Named Entity Recognition (NER) stands out as a pivotal mechanism for extracting structured insights from unstructured text. This manuscript offers an exhaustive exploration into the evolving landscape of NER methodologies, blending foundational principles with contemporary AI advancements. Beginning with the rudimentary concepts of NER, the study spans a spectrum of techniques from traditional rule-based strategies to the contemporary marvels of transformer architectures, particularly highlighting integrations such as BERT with LSTM and CNN. The narrative accentuates domain-specific NER models, tailored for intricate areas like finance, legal, and healthcare, emphasizing their specialized adaptability. Additionally, the research delves into cutting-edge paradigms including reinforcement learning, innovative constructs like E-NER, and the interplay of Optical Character Recognition (OCR) in augmenting NER capabilities. Grounding its insights in practical realms, the paper sheds light on the indispensable role of NER in sectors like finance and biomedicine, addressing the unique challenges they present. The conclusion outlines open challenges and avenues, marking this work as a comprehensive guide for those delving into NER research and applications

    A Knowledge Graph Construction Approach for Legal Domain

    Get PDF
    Considering that the existing domain knowledge graphs have difficulty in updating data in a timely manner and cannot make use of knowledge sufficiently in the construction process, this paper proposes a legal domain knowledge graph construction approach based on \u27China Judgments Online\u27 in order to manage the cases\u27 knowledge contained in it. The construction process is divided into two steps. First, we extract the classification relationships of the cases from structured data. Then, we obtain attribute knowledge of cases from semi-structured data and unstructured data through a relationship extraction model based on an improved cross-entropy loss function. The triples describing knowledge of cases are stored through Neo4j. The accuracy of the proposed approach is verified through experiments and we construct a legal domain knowledge graph which contains more than 4K classification relationships and 12K attribute knowledge to prove its validity

    Minimizing Supervision for Vision-Based Perception and Control in Autonomous Driving

    Get PDF
    The research presented in this dissertation focuses on reducing the need for supervision in two tasks related to autonomous driving: end-to-end steering and free space segmentation. For end-to-end steering, we devise a new regularization technique which relies on pixel-relevance heatmaps to force the steering model to focus on lane markings. This improves performance across a variety of offline metrics. In relation to this work, we publicly release the RoboBus dataset, which consists of extensive driving data recorded using a commercial bus on a cross-border public transport route on the Luxembourgish-French border. We also tackle pseudo-supervised free space segmentation from three different angles: (1) we propose a Stochastic Co-Teaching training scheme that explicitly attempts to filter out the noise in pseudo-labels, (2) we study the impact of self-training and of different data augmentation techniques, (3) we devise a novel pseudo-label generation method based on road plane distance estimation from approximate depth maps. Finally, we investigate semi-supervised free space estimation and find that combining our techniques with a restricted subset of labeled samples results in substantial improvements in IoU, Precision and Recall

    A novel hybrid approach for automated detection of retinal detachment using ultrasound images

    Get PDF
    Retinal detachment (RD) is an ocular emergency, which needs quick intervention to preclude permanent vision loss. In general, ocular ultrasound is used by ophthalmologists to enhance their judgment in detecting RD in eyes with media opacities which precludes the retinal evaluation. However, the quality of ultrasound (US) images may be degraded due to the presence of noise, and other retinal conditions may cause membranous echoes. All these can influence the accuracy of diagnosis. Hence, to overcome the above, we are proposing an automated system to detect RD using texton, higher order spectral (HOS) cumulants and locality sensitive discriminant analysis (LSDA) techniques. Our developed method is able to classify the posterior vitreous detachment and RD using support vector machine classifier with highest accuracy of 99.13%. Our system is ready to be tested with more diverse ultrasound images and aid ophthalmologists to arrive at a more accurate diagnosis

    Refining Weakly-Supervised Free Space Estimation Through Data Augmentation and Recursive Training

    Get PDF
    Free space estimation is an important problem for autonomous robot navigation. Traditional camera-based approaches rely on pixel-wise ground truth annotations to train a segmentation model. To cover the wide variety of environments and lighting conditions encountered on roads, training supervised models requires large datasets. This makes the annotation cost prohibitively high. In this work, we propose a novel approach for obtaining free space estimates from images taken with a single road-facing camera. We rely on a technique that generates weak free space labels without any supervision, which are then used as ground truth to train a segmentation model for free space estimation. We study the impact of different data augmentation techniques on the performances of free space predictions, and propose to use a recursive training strategy. Our results are benchmarked using the Cityscapes dataset and improve over comparable published work across all evaluation metrics. Our best model reaches 83.64% IoU (+2.3%), 91.75 Precision (+2.4%) and 91.29% Recall (+0.4%). These results correspond to 88.8% of the IoU, 94.3% of the Precision and 93.1% of the Recall obtained by an equivalent fully-supervised baseline, while using no ground truth annotation. Our code and models are freely available online
    • …
    corecore