1 research outputs found

    Distant-Time Location Prediction in Low-Sampling-Rate Trajectories

    Full text link
    Abstract—With the growth of location-based services and social services, low-sampling-rate trajectories from check-in data or photos with geo-tag information becomes ubiquitous. In general, most detailed moving information in low-sampling-rate trajectories are lost. Prior works have elaborated on distant-time location prediction in high-sampling-rate trajectories. However, existing prediction models are pattern-based and thus not ap-plicable due to the sparsity of data points in low-sampling-rate trajectories. For example, it becomes difficult to derive trajectory patterns, let alone utilizing trajectory patterns for distant-time location prediction. In this paper, given a query time, the current location and time, we aim to predict the location of an object at the query time. To address the sparsity in low-sampling-rate trajectories, we develop a Reachability-based prediction model on Time-constrained Mobility Graph (abbreviated as RTMG) to predict locations for distant-time queries. Specifically, we design an adaptive temporal exploration approach to extract effective supporting trajectories that are temporally close to the query time. These data points are then represented as a Time-constrained user mobility Graph (refers to as TG). In light of TG, we further derive the reachability probabilities among locations in TG. Thus, a location with maximum reachability from the current location among all possible locations in sup-porting trajectories is considered as the prediction result. To efficiently process queries, we proposed an index structure SOIT to organize location records for on-line query processing. We conduct extensive experiments on real low-sampling-rate datasets and demonstrate the effectiveness and efficiency of RTMG. I
    corecore