17 research outputs found

    Distance-based Self-Attention Network for Natural Language Inference

    Full text link
    Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.Comment: 12 pages, 13 figure

    Dynamic Self-Attention : Computing Attention over Words Dynamically for Sentence Embedding

    Full text link
    In this paper, we propose Dynamic Self-Attention (DSA), a new self-attention mechanism for sentence embedding. We design DSA by modifying dynamic routing in capsule network (Sabouretal.,2017) for natural language processing. DSA attends to informative words with a dynamic weight vector. We achieve new state-of-the-art results among sentence encoding methods in Stanford Natural Language Inference (SNLI) dataset with the least number of parameters, while showing comparative results in Stanford Sentiment Treebank (SST) dataset.Comment: 7 pages, 4 figure

    Towards Open Intent Discovery for Conversational Text

    Full text link
    Detecting and identifying user intent from text, both written and spoken, plays an important role in modelling and understand dialogs. Existing research for intent discovery model it as a classification task with a predefined set of known categories. To generailze beyond these preexisting classes, we define a new task of \textit{open intent discovery}. We investigate how intent can be generalized to those not seen during training. To this end, we propose a two-stage approach to this task - predicting whether an utterance contains an intent, and then tagging the intent in the input utterance. Our model consists of a bidirectional LSTM with a CRF on top to capture contextual semantics, subject to some constraints. Self-attention is used to learn long distance dependencies. Further, we adapt an adversarial training approach to improve robustness and perforamce across domains. We also present a dataset of 25k real-life utterances that have been labelled via crowd sourcing. Our experiments across different domains and real-world datasets show the effectiveness of our approach, with less than 100 annotated examples needed per unique domain to recognize diverse intents. The approach outperforms state-of-the-art baselines by 5-15% F1 score points

    Self-Attentional Acoustic Models

    Full text link
    Self-attention is a method of encoding sequences of vectors by relating these vectors to each-other based on pairwise similarities. These models have recently shown promising results for modeling discrete sequences, but they are non-trivial to apply to acoustic modeling due to computational and modeling issues. In this paper, we apply self-attention to acoustic modeling, proposing several improvements to mitigate these issues: First, self-attention memory grows quadratically in the sequence length, which we address through a downsampling technique. Second, we find that previous approaches to incorporate position information into the model are unsuitable and explore other representations and hybrid models to this end. Third, to stress the importance of local context in the acoustic signal, we propose a Gaussian biasing approach that allows explicit control over the context range. Experiments find that our model approaches a strong baseline based on LSTMs with network-in-network connections while being much faster to compute. Besides speed, we find that interpretability is a strength of self-attentional acoustic models, and demonstrate that self-attention heads learn a linguistically plausible division of labor.Comment: Published at Interspeech 201

    The Natural Language Decathlon: Multitask Learning as Question Answering

    Full text link
    Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce the Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQAN's multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We also release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP

    Syntax-Infused Transformer and BERT models for Machine Translation and Natural Language Understanding

    Full text link
    Attention-based models have shown significant improvement over traditional algorithms in several NLP tasks. The Transformer, for instance, is an illustrative example that generates abstract representations of tokens inputted to an encoder based on their relationships to all tokens in a sequence. Recent studies have shown that although such models are capable of learning syntactic features purely by seeing examples, explicitly feeding this information to deep learning models can significantly enhance their performance. Leveraging syntactic information like part of speech (POS) may be particularly beneficial in limited training data settings for complex models such as the Transformer. We show that the syntax-infused Transformer with multiple features achieves an improvement of 0.7 BLEU when trained on the full WMT 14 English to German translation dataset and a maximum improvement of 1.99 BLEU points when trained on a fraction of the dataset. In addition, we find that the incorporation of syntax into BERT fine-tuning outperforms baseline on a number of downstream tasks from the GLUE benchmark

    Integrated Eojeol Embedding for Erroneous Sentence Classification in Korean Chatbots

    Full text link
    This paper attempts to analyze the Korean sentence classification system for a chatbot. Sentence classification is the task of classifying an input sentence based on predefined categories. However, spelling or space error contained in the input sentence causes problems in morphological analysis and tokenization. This paper proposes a novel approach of Integrated Eojeol (Korean syntactic word separated by space) Embedding to reduce the effect that poorly analyzed morphemes may make on sentence classification. It also proposes two noise insertion methods that further improve classification performance. Our evaluation results indicate that the proposed system classifies erroneous sentences more accurately than the baseline system by 17%p.0Comment: 9 pages, 2 figure

    DGA-Net Dynamic Gaussian Attention Network for Sentence Semantic Matching

    Full text link
    Sentence semantic matching requires an agent to determine the semantic relation between two sentences, where much recent progress has been made by the advancement of representation learning techniques and inspiration of human behaviors. Among all these methods, attention mechanism plays an essential role by selecting important parts effectively. However, current attention methods either focus on all the important parts in a static way or only select one important part at one attention step dynamically, which leaves a large space for further improvement. To this end, in this paper, we design a novel Dynamic Gaussian Attention Network (DGA-Net) to combine the advantages of current static and dynamic attention methods. More specifically, we first leverage pre-trained language model to encode the input sentences and construct semantic representations from a global perspective. Then, we develop a Dynamic Gaussian Attention (DGA) to dynamically capture the important parts and corresponding local contexts from a detailed perspective. Finally, we combine the global information and detailed local information together to decide the semantic relation of sentences comprehensively and precisely. Extensive experiments on two popular sentence semantic matching tasks demonstrate that our proposed DGA-Net is effective in improving the ability of attention mechanism.Comment: Accepted by CICAI202

    Combining Similarity Features and Deep Representation Learning for Stance Detection in the Context of Checking Fake News

    Full text link
    Fake news are nowadays an issue of pressing concern, given their recent rise as a potential threat to high-quality journalism and well-informed public discourse. The Fake News Challenge (FNC-1) was organized in 2017 to encourage the development of machine learning-based classification systems for stance detection (i.e., for identifying whether a particular news article agrees, disagrees, discusses, or is unrelated to a particular news headline), thus helping in the detection and analysis of possible instances of fake news. This article presents a new approach to tackle this stance detection problem, based on the combination of string similarity features with a deep neural architecture that leverages ideas previously advanced in the context of learning efficient text representations, document classification, and natural language inference. Specifically, we use bi-directional Recurrent Neural Networks, together with max-pooling over the temporal/sequential dimension and neural attention, for representing (i) the headline, (ii) the first two sentences of the news article, and (iii) the entire news article. These representations are then combined/compared, complemented with similarity features inspired on other FNC-1 approaches, and passed to a final layer that predicts the stance of the article towards the headline. We also explore the use of external sources of information, specifically large datasets of sentence pairs originally proposed for training and evaluating natural language inference methods, in order to pre-train specific components of the neural network architecture (e.g., the RNNs used for encoding sentences). The obtained results attest to the effectiveness of the proposed ideas and show that our model, particularly when considering pre-training and the combination of neural representations together with similarity features, slightly outperforms the previous state-of-the-art.Comment: Accepted for publication in the special issue of the ACM Journal of Data and Information Quality (ACM JDIQ) on Combating Digital Misinformation and Disinformatio

    Multiple Structural Priors Guided Self Attention Network for Language Understanding

    Full text link
    Self attention networks (SANs) have been widely utilized in recent NLP studies. Unlike CNNs or RNNs, standard SANs are usually position-independent, and thus are incapable of capturing the structural priors between sequences of words. Existing studies commonly apply one single mask strategy on SANs for incorporating structural priors while failing at modeling more abundant structural information of texts. In this paper, we aim at introducing multiple types of structural priors into SAN models, proposing the Multiple Structural Priors Guided Self Attention Network (MS-SAN) that transforms different structural priors into different attention heads by using a novel multi-mask based multi-head attention mechanism. In particular, we integrate two categories of structural priors, including the sequential order and the relative position of words. For the purpose of capturing the latent hierarchical structure of the texts, we extract these information not only from the word contexts but also from the dependency syntax trees. Experimental results on two tasks show that MS-SAN achieves significant improvements against other strong baselines
    corecore