1,745 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Exploring Terms and Taxonomies Relating to the Cyber International Relations Research Field: or are "Cyberspace" and "Cyber Space" the same?

    Get PDF
    This project has at least two facets to it: (1) advancing the algorithms in the sub-field of bibliometrics often referred to as "text mining" whereby hundreds of thousands of documents (such as journal articles) are scanned and relationships amongst words and phrases are established and (2) applying these tools in support of the Explorations in Cyber International Relations (ECIR) research effort. In international relations, it is important that all the parties understand each other. Although dictionaries, glossaries, and other sources tell you what words/phrases are supposed to mean (somewhat complicated by the fact that they often contradict each other), they do not tell you how people are actually using them. As an example, when we started, we assumed that "cyberspace" and "cyber space" were essentially the same word with just a minor variation in punctuation (i.e., the space, or lack thereof, between "cyber" and "space") and that the choice of the punctuation was a rather random occurrence. With that assumption in mind, we would expect that the taxonomies that would be constructed by our algorithms using "cyberspace" and "cyber space" as seed terms would be basically the same. As it turned out, they were quite different, both in overall shape and groupings within the taxonomy. Since the overall field of cyber international relations is so new, understanding the field and how people think about (as evidenced by their actual usage of terminology, and how usage changes over time) is an important goal as part of the overall ECIR project

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Learning with online constraints : shifting concepts and active learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 99-102).Many practical problems such as forecasting, real-time decision making, streaming data applications, and resource-constrained learning, can be modeled as learning with online constraints. This thesis is concerned with analyzing and designing algorithms for learning under the following online constraints: i) The algorithm has only sequential, or one-at-time, access to data. ii) The time and space complexity of the algorithm must not scale with the number of observations. We analyze learning with online constraints in a variety of settings, including active learning. The active learning model is applicable to any domain in which unlabeled data is easy to come by and there exists a (potentially difficult or expensive) mechanism by which to attain labels. First, we analyze a supervised learning framework in which no statistical assumptions are made about the sequence of observations, and algorithms are evaluated based on their regret, i.e. their relative prediction loss with respect to the hindsight-optimal algorithm in a comparator class. We derive a, lower bound on regret for a class of online learning algorithms designed to track shifting concepts in this framework. We apply an algorithm we provided in previous work, that avoids this lower bound, to an energy-management problem in wireless networks, and demonstrate this application in a network simulation.(cont.) Second, we analyze a supervised learning framework in which the observations are assumed to be iid, and algorithms are compared by the number of prediction mistakes made in reaching a target generalization error. We provide a lower bound on mistakes for Perceptron, a standard online learning algorithm, for this framework. We introduce a modification to Perceptron and show that it avoids this lower bound, and in fact attains the optimal mistake-complexity for this setting. Third, we motivate and analyze an online active learning framework. The observations are assumed to be iid, and algorithms are judged by the number of label queries to reach a target generalization error. Our lower bound applies to the active learning setting as well, as a lower bound on labels for Perceptron paired with any active learning rule. We provide a new online active learning algorithm that avoids the lower bound, and we upper bound its label-complexity. The upper bound is optimal and also bounds the algorithm's total errors (labeled and unlabeled). We analyze the algorithm further, yielding a label-complexity bound under relaxed assumptions. Using optical character recognition data, we empirically compare the new algorithm to an online active learning algorithm with data-dependent performance guarantees, as well as to the combined variants of these two algorithms.by Claire E. Monteleoni.Ph.D

    A Survey of Provenance Leveraged Trust in Wireless Sensor Networks

    Get PDF
    A wireless sensor network is a collection of self-organized sensor nodes. WSNs have many challenges such as lack of a centralized network administration, absence of infrastructure, low data transmission capacity, low bandwidth, mobility, lack of connectivity, limited power supply and dynamic network topology. Due to this vulnerable nature, WSNs need a trust architecture to keep the quality of the network data high for a longer time. In this work, we aim to survey the proposed trust architectures for WSNs. Provenance can play a key role in assessing trust in these architectures. However not many research have leveraged provenance for trust in WSNs. We also aim to point out this gap in the field and encourage researchers to invest in this topic. To our knowledge our work is unique and provenance leveraged trust work in WSNs has not been surveyed before. Keywords:Provenance, Trust, Wireless Sensor Networks  
    • …
    corecore