18 research outputs found

    Correcting a Fraction of Errors in Nonbinary Expander Codes with Linear Programming

    Full text link
    A linear-programming decoder for \emph{nonbinary} expander codes is presented. It is shown that the proposed decoder has the maximum-likelihood certificate properties. It is also shown that this decoder corrects any pattern of errors of a relative weight up to approximately 1/4 \delta_A \delta_B (where \delta_A and \delta_B are the relative minimum distances of the constituent codes).Comment: Part of this work was presented at the IEEE International Symposium on Information Theory 2009, Seoul, Kore

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1−ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem

    Woven Graph Codes: Asymptotic Performances and Examples

    Full text link
    Constructions of woven graph codes based on constituent block and convolutional codes are studied. It is shown that within the random ensemble of such codes based on ss-partite, ss-uniform hypergraphs, where ss depends only on the code rate, there exist codes satisfying the Varshamov-Gilbert (VG) and the Costello lower bound on the minimum distance and the free distance, respectively. A connection between regular bipartite graphs and tailbiting codes is shown. Some examples of woven graph codes are presented. Among them an example of a rate Rwg=1/3R_{\rm wg}=1/3 woven graph code with dfree=32d_{\rm free}=32 based on Heawood's bipartite graph and containing n=7n=7 constituent rate Rc=2/3R^{c}=2/3 convolutional codes with overall constraint lengths νc=5\nu^{c}=5 is given. An encoding procedure for woven graph codes with complexity proportional to the number of constituent codes and their overall constraint length νc\nu^{c} is presented.Comment: Submitted to IEEE Trans. Inform. Theor

    A rate R=5/20 hypergraph-based woven convolutional code with free distance 120

    Get PDF
    A rate R=5/20 hypergraph-based woven convolu- tional code with overall constraint length 67 and constituent con- volutional codes is presented. It is based on a 3-partite, 3-uniform, 4-regular hypergraph and contains rate R=3/4 constituent convolutional codes with overall constraint length 5. Although the code construction is based on low-complexity codes, the free distance of this construction, computed with the BEAST algorithm, is dfree=120, which is remarkably large
    corecore