1,489,644 research outputs found

    Mrk 1419 - a new distance determination

    Full text link
    Water vapor megamasers from the center of active galaxies provide a powerful tool to trace accretion disks at sub-parsec resolution and, through an entirely geometrical method, measure direct distances to galaxies up to 200 Mpc. The Megamaser Cosmology Project (MCP) is formed by a team of astronomers with the aim of identifying new maser systems, and mapping their emission at high angular resolution to determine their distance. Two types of observations are necessary to measure a distance: single-dish monitoring to measure the acceleration of gas in the disk, and sensitive VLBI imaging to measure the angular size of the disk, measure the rotation curve, and model radial displacement of the maser feature. The ultimate goal of the MCP is to make a precise measurement of H0 by measuring such distances to at least 10 maser galaxies in the Hubble flow. We present here the preliminary results from a new maser system, Mrk 1419. Through a model of the rotation from the systemic masers assuming a narrow ring, and combining these results with the acceleration measurement from the Green Bank Telescope, we determine a distance to Mrk 1419 of 81\pm10 Mpc. Given that the disk shows a significant warp that may not be entirely traced by our current observations, more sensitive observations and more sophisticated disk modeling will be essential to improve our distance estimation to this galaxy.Comment: 5 pages, 3 figures, to appear in the proceedings of IAU Symposium 287 "Cosmic Masers- from OH to Ho", in Stellenbosch, S

    The Araucaria Project. An Accurate Distance to the Local Group Galaxy NGC 6822 from Near-Infrared Photometry of Cepheid Variables

    Get PDF
    We have measured near-infrared magnitudes in the J and K bands for 56 Cepheid variables in the Local Group galaxy NGC 6822 with well-determined periods and optical light curves in the V and I bands. Using the template light curve approach of Soszynski, Gieren and Pietrzynski, accurate mean magnitudes were obtained from these data which allowed us to determine with unprecedented accuracy the distance to NGC 6822 from a multi-wavelength period-luminosity solution in the VIJK bands. From our data, we obtain a distance to NGC 6822 of (m-M)_{0} = 23.312 +- 0.021 (random error) mag, with an additional systematic uncertainty of about 3 %. This distance value is tied to an assumed LMC distance modulus of 18.50. From our multiwavelength approach, we find for the total (average) reddening to the NGC 6822 Cepheids E(B-V) = 0.356 +- 0.013 mag, which is in excellent agreement with a previous determination of McGonegal et al. from near-infrared photometry and implies significant internal reddening of the Cepheids in NGC 6822. Our present, definitive distance determination of NGC 6822 from Cepheids agrees within 2 % with the previous distance we had derived from optical photometry alone, but has significantly reduced error bars. Our Cepheid distance to NGC 6822 is in excellent agreement with the recent independent determination of Cioni and Habing from the I-band magnitude of the tip of the red giant branch. It also agrees well, within the errors, with the early determination of McGonegal et al. (1983) from random-phase H-band photometry of nine Cepheids.Comment: Accepted to be published in the Ap

    The distance upon contact: Determination from roughness profile

    Get PDF
    The point at which two random rough surfaces make contact takes place at the contact of the highest asperities. The distance upon contact d_0 in the limit of zero load has crucial importance for determination of dispersive forces. Using gold films as an example we demonstrate that for two parallel plates d_0 is a function of the nominal size of the contact area L and give a simple expression for d_0(L) via the surface roughness characteristics. In the case of a sphere of fixed radius R and a plate the scale dependence manifests itself as an additional uncertainty \delta d(L) in the separation, where the scale L is related with the separation d via the effective area of interaction L^2\sim\pi Rd. This uncertainty depends on the roughness of interacting bodies and disappears in the limit L\to \infty.Comment: 5 pages, 4 figures, to be published in PR

    The White Dwarf Distance to the Globular Cluster 47 Tucanae and its Age

    Get PDF
    We present a new determination of the distance (and age) of the Galactic globular cluster 47 Tucanae (NGC 104) based on the fit of its white dwarf (WD) cooling sequence with the empirical fiducial sequence of local WD with known trigonometric parallax, following the method described in Renzini et al. (1996). Both the cluster and the local WDs were imaged with HST+WFPC2 using the same instrument setup. We obtained an apparent distance modulus of (mM)V=13.27±0.14(m-M)_V=13.27\pm0.14 consistent with previous ground-based determinations and shorter than that found using HIPPARCOS subdwarfs. Coupling our distance determination with a new measure of the apparent magnitude of the main sequence turnoff, based on our HST data, we derive an age of 13±2.513\pm2.5 Gyr.Comment: Accepted for publication on the Astrophysical Journa

    Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution

    Get PDF
    Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2--3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.Comment: matches PRD accepted version (expanded description of the cosmological parameter space + minor changes
    corecore