8,115 research outputs found

    Overlap Removal of Dimensionality Reduction Scatterplot Layouts

    Full text link
    Dimensionality Reduction (DR) scatterplot layouts have become a ubiquitous visualization tool for analyzing multidimensional data items with presence in different areas. Despite its popularity, scatterplots suffer from occlusion, especially when markers convey information, making it troublesome for users to estimate items' groups' sizes and, more importantly, potentially obfuscating critical items for the analysis under execution. Different strategies have been devised to address this issue, either producing overlap-free layouts, lacking the powerful capabilities of contemporary DR techniques in uncover interesting data patterns, or eliminating overlaps as a post-processing strategy. Despite the good results of post-processing techniques, the best methods typically expand or distort the scatterplot area, thus reducing markers' size (sometimes) to unreadable dimensions, defeating the purpose of removing overlaps. This paper presents a novel post-processing strategy to remove DR layouts' overlaps that faithfully preserves the original layout's characteristics and markers' sizes. We show that the proposed strategy surpasses the state-of-the-art in overlap removal through an extensive comparative evaluation considering multiple different metrics while it is 2 or 3 orders of magnitude faster for large datasets.Comment: 11 pages and 9 figure

    Stress-Minimizing Orthogonal Layout of Data Flow Diagrams with Ports

    Full text link
    We present a fundamentally different approach to orthogonal layout of data flow diagrams with ports. This is based on extending constrained stress majorization to cater for ports and flow layout. Because we are minimizing stress we are able to better display global structure, as measured by several criteria such as stress, edge-length variance, and aspect ratio. Compared to the layered approach, our layouts tend to exhibit symmetries, and eliminate inter-layer whitespace, making the diagrams more compact

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics
    corecore