879,277 research outputs found
FPT-Algorithms for Computing Gromov-Hausdorff and Interleaving Distances Between Trees
The Gromov-Hausdorff distance is a natural way to measure the distortion between two metric spaces. However, there has been only limited algorithmic development to compute or approximate this distance. We focus on computing the Gromov-Hausdorff distance between two metric trees. Roughly speaking, a metric tree is a metric space that can be realized by the shortest path metric on a tree. Any finite tree with positive edge weight can be viewed as a metric tree where the weight is treated as edge length and the metric is the induced shortest path metric in the tree. Previously, Agarwal et al. showed that even for trees with unit edge length, it is NP-hard to approximate the Gromov-Hausdorff distance between them within a factor of 3. In this paper, we present a fixed-parameter tractable (FPT) algorithm that can approximate the Gromov-Hausdorff distance between two general metric trees within a multiplicative factor of 14.
Interestingly, the development of our algorithm is made possible by a connection between the Gromov-Hausdorff distance for metric trees and the interleaving distance for the so-called merge trees. The merge trees arise in practice naturally as a simple yet meaningful topological summary (it is a variant of the Reeb graphs and contour trees), and are of independent interest. It turns out that an exact or approximation algorithm for the interleaving distance leads to an approximation algorithm for the Gromov-Hausdorff distance. One of the key contributions of our work is that we re-define the interleaving distance in a way that makes it easier to develop dynamic programming approaches to compute it. We then present a fixed-parameter tractable algorithm to compute the interleaving distance between two merge trees exactly, which ultimately leads to an FPT-algorithm to approximate the Gromov-Hausdorff distance between two metric trees. This exact FPT-algorithm to compute the interleaving distance between merge trees is of interest itself, as it is known that it is NP-hard to approximate it within a factor of 3, and previously the best known algorithm has an approximation factor of O(sqrt{n}) even for trees with unit edge length
The Extended Edit Distance Metric
Similarity search is an important problem in information retrieval. This
similarity is based on a distance. Symbolic representation of time series has
attracted many researchers recently, since it reduces the dimensionality of
these high dimensional data objects. We propose a new distance metric that is
applied to symbolic data objects and we test it on time series data bases in a
classification task. We compare it to other distances that are well known in
the literature for symbolic data objects. We also prove, mathematically, that
our distance is metric.Comment: Technical repor
Distance covariance in metric spaces
We extend the theory of distance (Brownian) covariance from Euclidean spaces,
where it was introduced by Sz\'{e}kely, Rizzo and Bakirov, to general metric
spaces. We show that for testing independence, it is necessary and sufficient
that the metric space be of strong negative type. In particular, we show that
this holds for separable Hilbert spaces, which answers a question of Kosorok.
Instead of the manipulations of Fourier transforms used in the original work,
we use elementary inequalities for metric spaces and embeddings in Hilbert
spaces.Comment: Published in at http://dx.doi.org/10.1214/12-AOP803 the Annals of
Probability (http://www.imstat.org/aop/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Two-Stage Metric Learning
In this paper, we present a novel two-stage metric learning algorithm. We
first map each learning instance to a probability distribution by computing its
similarities to a set of fixed anchor points. Then, we define the distance in
the input data space as the Fisher information distance on the associated
statistical manifold. This induces in the input data space a new family of
distance metric with unique properties. Unlike kernelized metric learning, we
do not require the similarity measure to be positive semi-definite. Moreover,
it can also be interpreted as a local metric learning algorithm with well
defined distance approximation. We evaluate its performance on a number of
datasets. It outperforms significantly other metric learning methods and SVM.Comment: Accepted for publication in ICML 201
Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
The -metric or Fubini-Study metric on the non-linear Grassmannian of all
submanifolds of type in a Riemannian manifold induces geodesic
distance 0. We discuss another metric which involves the mean curvature and
shows that its geodesic distance is a good topological metric. The vanishing
phenomenon for the geodesic distance holds also for all diffeomorphism groups
for the -metric.Comment: 26 pages, LATEX, final versio
- …
