9,776 research outputs found

    Topological Distance Games

    Full text link
    We introduce a class of strategic games in which agents are assigned to nodes of a topology graph and the utility of an agent depends on both the agent's inherent utilities for other agents as well as her distance from these agents on the topology graph. This model of topological distance games (TDGs) offers an appealing combination of important aspects of several prominent settings in coalition formation, including (additively separable) hedonic games, social distance games, and Schelling games. We study the existence and complexity of stable outcomes in TDGs -- for instance, while a jump stable assignment may not exist in general, we show that the existence is guaranteed in several special cases. We also investigate the dynamics induced by performing beneficial jumps.Comment: Appears in the 37th AAAI Conference on Artificial Intelligence (AAAI), 202

    On the price of stability of some simple graph-based hedonic games

    Get PDF
    We consider graph-based hedonic games such as simple symmetric fractional hedonic games and social distance games, where a group of utility maximizing players have hedonic preferences over the players’ set, and wish to be partitioned into clusters so that they are grouped together with players they prefer. The players are nodes in a connected graph and their preferences are defined so that shorter graph distance implies higher preference. We are interested in Nash equilibria of such games, where no player has an incentive to unilaterally deviate to another cluster, and we focus on the notion of the price of stability. We present new and improved bounds on the price of stability for several graph classes, as well as for a slightly modified utility function

    Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents

    Full text link
    Autonomous wireless agents such as unmanned aerial vehicles or mobile base stations present a great potential for deployment in next-generation wireless networks. While current literature has been mainly focused on the use of agents within robotics or software applications, we propose a novel usage model for self-organizing agents suited to wireless networks. In the proposed model, a number of agents are required to collect data from several arbitrarily located tasks. Each task represents a queue of packets that require collection and subsequent wireless transmission by the agents to a central receiver. The problem is modeled as a hedonic coalition formation game between the agents and the tasks that interact in order to form disjoint coalitions. Each formed coalition is modeled as a polling system consisting of a number of agents which move between the different tasks present in the coalition, collect and transmit the packets. Within each coalition, some agents can also take the role of a relay for improving the packet success rate of the transmission. The proposed algorithm allows the tasks and the agents to take distributed decisions to join or leave a coalition, based on the achieved benefit in terms of effective throughput, and the cost in terms of delay. As a result of these decisions, the agents and tasks structure themselves into independent disjoint coalitions which constitute a Nash-stable network partition. Moreover, the proposed algorithm allows the agents and tasks to adapt the topology to environmental changes such as the arrival/removal of tasks or the mobility of the tasks. Simulation results show how the proposed algorithm improves the performance, in terms of average player (agent or task) payoff, of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively to a scheme that allocates nearby tasks equally among agents.Comment: to appear, IEEE Transactions on Mobile Computin

    Simple Causes of Complexity in Hedonic Games

    Full text link
    Hedonic games provide a natural model of coalition formation among self-interested agents. The associated problem of finding stable outcomes in such games has been extensively studied. In this paper, we identify simple conditions on expressivity of hedonic games that are sufficient for the problem of checking whether a given game admits a stable outcome to be computationally hard. Somewhat surprisingly, these conditions are very mild and intuitive. Our results apply to a wide range of stability concepts (core stability, individual stability, Nash stability, etc.) and to many known formalisms for hedonic games (additively separable games, games with W-preferences, fractional hedonic games, etc.), and unify and extend known results for these formalisms. They also have broader applicability: for several classes of hedonic games whose computational complexity has not been explored in prior work, we show that our framework immediately implies a number of hardness results for them.Comment: 7+9 pages, long version of a paper in IJCAI 201

    Coalition Resilient Outcomes in Max k-Cut Games

    Full text link
    We investigate strong Nash equilibria in the \emph{max kk-cut game}, where we are given an undirected edge-weighted graph together with a set {1,…,k}\{1,\ldots, k\} of kk colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player vv consists of the kk colors. When players select a color they induce a kk-coloring or simply a coloring. Given a coloring, the \emph{utility} (or \emph{payoff}) of a player uu is the sum of the weights of the edges {u,v}\{u,v\} incident to uu, such that the color chosen by uu is different from the one chosen by vv. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games. Very little is known about the existence of strong equilibria in max kk-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in \cite{DBLP:conf/tamc/GourvesM10}. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce xx-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most xx. We prove that 11-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.Comment: A preliminary version of this paper will appear in the proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM'19
    • …
    corecore