7,053 research outputs found

    Subsampling Mathematical Relaxations and Average-case Complexity

    Full text link
    We initiate a study of when the value of mathematical relaxations such as linear and semidefinite programs for constraint satisfaction problems (CSPs) is approximately preserved when restricting the instance to a sub-instance induced by a small random subsample of the variables. Let CC be a family of CSPs such as 3SAT, Max-Cut, etc., and let Π\Pi be a relaxation for CC, in the sense that for every instance PCP\in C, Π(P)\Pi(P) is an upper bound the maximum fraction of satisfiable constraints of PP. Loosely speaking, we say that subsampling holds for CC and Π\Pi if for every sufficiently dense instance PCP \in C and every ϵ>0\epsilon>0, if we let PP' be the instance obtained by restricting PP to a sufficiently large constant number of variables, then Π(P)(1±ϵ)Π(P)\Pi(P') \in (1\pm \epsilon)\Pi(P). We say that weak subsampling holds if the above guarantee is replaced with Π(P)=1Θ(γ)\Pi(P')=1-\Theta(\gamma) whenever Π(P)=1γ\Pi(P)=1-\gamma. We show: 1. Subsampling holds for the BasicLP and BasicSDP programs. BasicSDP is a variant of the relaxation considered by Raghavendra (2008), who showed it gives an optimal approximation factor for every CSP under the unique games conjecture. BasicLP is the linear programming analog of BasicSDP. 2. For tighter versions of BasicSDP obtained by adding additional constraints from the Lasserre hierarchy, weak subsampling holds for CSPs of unique games type. 3. There are non-unique CSPs for which even weak subsampling fails for the above tighter semidefinite programs. Also there are unique CSPs for which subsampling fails for the Sherali-Adams linear programming hierarchy. As a corollary of our weak subsampling for strong semidefinite programs, we obtain a polynomial-time algorithm to certify that random geometric graphs (of the type considered by Feige and Schechtman, 2002) of max-cut value 1γ1-\gamma have a cut value at most 1γ/101-\gamma/10.Comment: Includes several more general results that subsume the previous version of the paper

    A Landscape Analysis of Constraint Satisfaction Problems

    Full text link
    We discuss an analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring, in terms of an effective energy landscape. Several intriguing geometrical properties of the solution space become in this light familiar in terms of the well-studied ones of rugged (glassy) energy landscapes. A `benchmark' algorithm naturally suggested by this construction finds solutions in polynomial time up to a point beyond the `clustering' and in some cases even the `thermodynamic' transitions. This point has a simple geometric meaning and can be in principle determined with standard Statistical Mechanical methods, thus pushing the analytic bound up to which problems are guaranteed to be easy. We illustrate this for the graph three and four-coloring problem. For Packing problems the present discussion allows to better characterize the `J-point', proposed as a systematic definition of Random Close Packing, and to place it in the context of other theories of glasses.Comment: 17 pages, 69 citations, 12 figure

    Faster SDP hierarchy solvers for local rounding algorithms

    Full text link
    Convex relaxations based on different hierarchies of linear/semi-definite programs have been used recently to devise approximation algorithms for various optimization problems. The approximation guarantee of these algorithms improves with the number of {\em rounds} rr in the hierarchy, though the complexity of solving (or even writing down the solution for) the rr'th level program grows as nΩ(r)n^{\Omega(r)} where nn is the input size. In this work, we observe that many of these algorithms are based on {\em local} rounding procedures that only use a small part of the SDP solution (of size nO(1)2O(r)n^{O(1)} 2^{O(r)} instead of nΩ(r)n^{\Omega(r)}). We give an algorithm to find the requisite portion in time polynomial in its size. The challenge in achieving this is that the required portion of the solution is not fixed a priori but depends on other parts of the solution, sometimes in a complicated iterative manner. Our solver leads to nO(1)2O(r)n^{O(1)} 2^{O(r)} time algorithms to obtain the same guarantees in many cases as the earlier nO(r)n^{O(r)} time algorithms based on rr rounds of the Lasserre hierarchy. In particular, guarantees based on O(logn)O(\log n) rounds can be realized in polynomial time. We develop and describe our algorithm in a fairly general abstract framework. The main technical tool in our work, which might be of independent interest in convex optimization, is an efficient ellipsoid algorithm based separation oracle for convex programs that can output a {\em certificate of infeasibility with restricted support}. This is used in a recursive manner to find a sequence of consistent points in nested convex bodies that "fools" local rounding algorithms.Comment: 30 pages, 8 figure
    corecore