2 research outputs found

    Design and Implementation of Embedded Water Quality Control and Monitoring System for Indoor Shrimp Cultivation

    Get PDF
    Maintaining the water quality of a pond is one of the main issues on aquaculture management. Water quality represents the condition of a pond based on several water parameters such as dissolved oxygen (DO), temperature, pH, and salinity. All of these parameters need to be strictly supervised since it affects the life-sustainability of cultivated organisms. However, DO is said to be the main parameter since it affects the growth and survival rate of the shrimp. Therefore, a water quality control and monitoring system is needed to maintain water parameters at acceptable value. The system is developed on a mini-PC and microcontroller which are integrated with several sensors and actuator forming an embedded system. Then, this system is used to collect water quality data that is consisting of several water parameters and control the DO as the main parameter. In accordance with the stability needs against the sensitive environment, a fuzzy logic-based controller is developed to maintain the DO rate in the water. This system is also equipped with SIM800 module to notice the farmer by SMS, built-in wifi module for web-based data logging, and improved with Android-based graphical user interface (GUI) to perform user-friendly monitoring. From the experiment results, a fuzzy controller that is attached to the system can control the DO at the acceptable value of 6 ppm. The controller is said to have high robustness since its deviation for long-time use is only 0.12 ppm. Another test shows that the controller is able to overcome the given disturbance and easily adapt when the DO’s set point is changed.  Finally, the system is able to collect and store the data into cloud storage periodically and show the data on a website

    Improving Activated Sludge Wastewater Treatment Process Efficiency Using Predictive Control

    Get PDF
    This paper investigates the performance of a new predictive control approach used to improve the energy efficiency and effluent quality of a conventional Wastewater Treatment Plant (WWTP). A modified variant of the well-known Generalized Predictive Control (GPC) method has been applied to control the dissolved oxygen concentration in the aerobic bioreactor of a WWTP. The quadratic cost function was modified to a positional implementation that considers control signal weighting and not its increments, in order to minimize the control energy. The Activated Sludge Process (ASP) optimization using the proposed variant of the GPC algorithm provides an improved aeration system efficiency to reduce energy costs. The control strategy is investigated and evaluated by performing simulations and analyzing the results. Both the set point tracking and the regulatory performances have been tested. Moreover, the effects of some tuning parameters are also investigated. The results show that this control strategy can be efficiently used for dissolved oxygen control in WWTP
    corecore