1 research outputs found

    Monitoring of hybrid manufacturing using acoustic emission sensor

    Get PDF
    The approach of hybrid manufacturing addressed in this research uses two manufacturing processes, one process builds a metal part using laser metal deposition, and the other process finishes the part using a milling machining. The ability to produce complete functioning parts in a short time with minimal cost and energy consumption has made hybrid manufacturing popular in many industries for parts repair and rapid prototyping. Monitoring of hybrid manufacturing processes has become popular because it increases the quality and accuracy of the parts produced and reduces both costs and production time. The goal of this work is to monitor the entire hybrid manufacturing process. During the laser metal deposition, the acoustic emission sensor will monitor the defect formation. The acoustic emission sensor will monitor the depth of cut during milling machining. There are three tasks in this study. The first task addresses depth-of-cut detection and tool-workpiece engagement using an acoustic emission monitoring system during milling machining for a deposited material. The second task, defects monitoring system was proposed to detect and classify defects in real time using an acoustic emission (AE) sensor and an unsupervised pattern recognition analysis (K-means clustering) in conjunction with a principal component analysis (PCA). In the third task, a study was conducted to investigate the ability of AE to detect and identify defects during laser metal deposition using a Logistic Regression Model (LR) and an Artificial Neural Network (ANN) --Abstract, page iv
    corecore