2,073 research outputs found

    Dissipative Stabilization of Linear Systems with Time-Varying General Distributed Delays (Complete Version)

    Full text link
    New methods are developed for the stabilization of a linear system with general time-varying distributed delays existing at the system's states, inputs and outputs. In contrast to most existing literature where the function of time-varying delay is continuous and bounded, we assume it to be bounded and measurable. Furthermore, the distributed delay kernels can be any square-integrable function over a bounded interval, where the kernels are handled directly by using a decomposition scenario without using approximations. By constructing a Krasovski\u{i} functional via the application of a novel integral inequality, sufficient conditions for the existence of a dissipative state feedback controller are derived in terms of matrix inequalities without utilizing the existing reciprocally convex combination lemmas. The proposed synthesis (stability) conditions, which take dissipativity into account, can be either solved directly by a standard numerical solver of semidefinite programming if they are convex, or reshaped into linear matrix inequalities, or solved via a proposed iterative algorithm. To the best of our knowledge, no existing methods can handle the synthesis problem investigated in this paper. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.Comment: Accepted by Automatic

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback

    Full text link
    In this paper we consider a viscoelastic wave equation with a time-varying delay term, the coefficient of which is not necessarily positive. By introducing suitable energy and Lyapunov functionals, under suitable assumptions, we establish a general energy decay result from which the exponential and polynomial types of decay are only special cases.Comment: 11 page

    On a Kelvin-Voigt Viscoelastic Wave Equation with Strong Delay

    Get PDF
    An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin & Voigt-type material law is considered. Transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C0C^{0}- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using the Lyapunov's indirect method. The singular limit τ→0\tau \to 0 is further studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.Comment: 34 pages, 4 figures, 1 set of Matlab code

    Interior feedback stabilization of wave equations with dynamic boundary delay

    Get PDF
    In this paper we consider an interior stabilization problem for the wave equation with dynamic boundary delay.We prove some stability results under the choice of damping operator. The proof of the main result is based on a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent
    • …
    corecore