2,001 research outputs found

    Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles

    Get PDF
    Biomimetics, which draws inspiration from nature, has emerged as a key approach in the development of underwater vehicles. The integration of this approach with computational fluid dynamics (CFD) has further propelled research in this field. CFD, as an effective tool for dynamic analysis, contributes significantly to understanding and resolving complex fluid dynamic problems in underwater vehicles. Biomimetics seeks to harness innovative inspiration from the biological world. Through the imitation of the structure, behavior, and functions of organisms, biomimetics enables the creation of efficient and unique designs. These designs are aimed at enhancing the speed, reliability, and maneuverability of underwater vehicles, as well as reducing drag and noise. CFD technology, which is capable of precisely predicting and simulating fluid flow behaviors, plays a crucial role in optimizing the structural design of underwater vehicles, thereby significantly enhancing their hydrodynamic and kinematic performances. Combining biomimetics and CFD technology introduces a novel approach to underwater vehicle design and unveils broad prospects for research in natural science and engineering applications. Consequently, this paper aims to review the application of CFD technology in the biomimicry of underwater vehicles, with a primary focus on biomimetic propulsion, biomimetic drag reduction, and biomimetic noise reduction. Additionally, it explores the challenges faced in this field and anticipates future advancements

    Exploring the effects of robotic design on learning and neural control

    Full text link
    The ongoing deep learning revolution has allowed computers to outclass humans in various games and perceive features imperceptible to humans during classification tasks. Current machine learning techniques have clearly distinguished themselves in specialized tasks. However, we have yet to see robots capable of performing multiple tasks at an expert level. Most work in this field is focused on the development of more sophisticated learning algorithms for a robot's controller given a largely static and presupposed robotic design. By focusing on the development of robotic bodies, rather than neural controllers, I have discovered that robots can be designed such that they overcome many of the current pitfalls encountered by neural controllers in multitask settings. Through this discovery, I also present novel metrics to explicitly measure the learning ability of a robotic design and its resistance to common problems such as catastrophic interference. Traditionally, the physical robot design requires human engineers to plan every aspect of the system, which is expensive and often relies on human intuition. In contrast, within the field of evolutionary robotics, evolutionary algorithms are used to automatically create optimized designs, however, such designs are often still limited in their ability to perform in a multitask setting. The metrics created and presented here give a novel path to automated design that allow evolved robots to synergize with their controller to improve the computational efficiency of their learning while overcoming catastrophic interference. Overall, this dissertation intimates the ability to automatically design robots that are more general purpose than current robots and that can perform various tasks while requiring less computation.Comment: arXiv admin note: text overlap with arXiv:2008.0639

    Human Activity Recognition and Fall Detection Using Unobtrusive Technologies

    Full text link
    As the population ages, health issues like injurious falls demand more attention. Wearable devices can be used to detect falls. However, despite their commercial success, most wearable devices are obtrusive, and patients generally do not like or may forget to wear them. In this thesis, a monitoring system consisting of two 24Ă—32 thermal array sensors and a millimetre-wave (mmWave) radar sensor was developed to unobtrusively detect locations and recognise human activities such as sitting, standing, walking, lying, and falling. Data were collected by observing healthy young volunteers simulate ten different scenarios. The optimal installation position of the sensors was initially unknown. Therefore, the sensors were mounted on a side wall, a corner, and on the ceiling of the experimental room to allow performance comparison between these sensor placements. Every thermal frame was converted into an image and a set of features was manually extracted or convolutional neural networks (CNNs) were used to automatically extract features. Applying a CNN model on the infrared stereo dataset to recognise five activities (falling plus lying on the floor, lying in bed, sitting on chair, sitting in bed, standing plus walking), overall average accuracy and F1-score were 97.6%, and 0.935, respectively. The scores for detecting falling plus lying on the floor from the remaining activities were 97.9%, and 0.945, respectively. When using radar technology, the generated point clouds were converted into an occupancy grid and a CNN model was used to automatically extract features, or a set of features was manually extracted. Applying several classifiers on the manually extracted features to detect falling plus lying on the floor from the remaining activities, Random Forest (RF) classifier achieved the best results in overhead position (an accuracy of 92.2%, a recall of 0.881, a precision of 0.805, and an F1-score of 0.841). Additionally, the CNN model achieved the best results (an accuracy of 92.3%, a recall of 0.891, a precision of 0.801, and an F1-score of 0.844), in overhead position and slightly outperformed the RF method. Data fusion was performed at a feature level, combining both infrared and radar technologies, however the benefit was not significant. The proposed system was cost, processing time, and space efficient. The system with further development can be utilised as a real-time fall detection system in aged care facilities or at homes of older people

    Fast Sensing and Adaptive Actuation for Robust Legged Locomotion

    Get PDF
    Robust legged locomotion in complex terrain demands fast perturbation detection and reaction. In animals, due to the neural transmission delays, the high-level control loop involving the brain is absent from mitigating the initial disturbance. Instead, the low-level compliant behavior embedded in mechanics and the mid-level controllers in the spinal cord are believed to provide quick response during fast locomotion. Still, it remains unclear how these low- and mid-level components facilitate robust locomotion. This thesis aims to identify and characterize the underlining elements responsible for fast sensing and actuation. To test individual elements and their interplay, several robotic systems were implemented. The implementations include active and passive mechanisms as a combination of elasticities and dampers in multi-segment robot legs, central pattern generators inspired by intraspinal controllers, and a synthetic robotic version of an intraspinal sensor. The first contribution establishes the notion of effective damping. Effective damping is defined as the total energy dissipation during one step, which allows quantifying how much ground perturbation is mitigated. Using this framework, the optimal damper is identified as viscous and tunable. This study paves the way for integrating effective dampers to legged designs for robust locomotion. The second contribution introduces a novel series elastic actuation system. The proposed system tackles the issue of power transmission over multiple joints, while featuring intrinsic series elasticity. The design is tested on a hopper with two more elastic elements, demonstrating energy recuperation and enhanced dynamic performance. The third contribution proposes a novel tunable damper and reveals its influence on legged hopping. A bio-inspired slack tendon mechanism is implemented in parallel with a spring. The tunable damping is rigorously quantified on a central-pattern-generator-driven hopping robot, which reveals the trade-off between locomotion robustness and efficiency. The last contribution explores the intraspinal sensing hypothesis of birds. We speculate that the observed intraspinal structure functions as an accelerometer. This accelerometer could provide fast state feedback directly to the adjacent central pattern generator circuits, contributing to birds’ running robustness. A biophysical simulation framework is established, which provides new perspectives on the sensing mechanics of the system, including the influence of morphologies and material properties. Giving an overview of the hierarchical control architecture, this thesis investigates the fast sensing and actuation mechanisms in several control layers, including the low-level mechanical response and the mid-level intraspinal controllers. The contributions of this work provide new insight into animal loco-motion robustness and lays the foundation for future legged robot design

    Continuous Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data Using Sparse and Positive-Only Labels

    Get PDF
    Estimating the imminent risk of adverse health behaviors provides opportunities for developing effective behavioral intervention mechanisms to prevent the occurrence of the target behavior. One of the key goals is to find opportune moments for intervention by passively detecting the rising risk of an imminent adverse behavior. Significant progress in mobile health research and the ability to continuously sense internal and external states of individual health and behavior has paved the way for detecting diverse risk factors from mobile sensor data. The next frontier in this research is to account for the combined effects of these risk factors to produce a composite risk score of adverse behaviors using wearable sensors convenient for daily use. Developing a machine learning-based model for assessing the risk of smoking lapse in the natural environment faces significant outstanding challenges requiring the development of novel and unique methodologies for each of them. The first challenge is coming up with an accurate representation of noisy and incomplete sensor data to encode the present and historical influence of behavioral cues, mental states, and the interactions of individuals with their ever-changing environment. The next noteworthy challenge is the absence of confirmed negative labels of low-risk states and adequate precise annotations of high-risk states. Finally, the model should work on convenient wearable devices to facilitate widespread adoption in research and practice. In this dissertation, we develop methods that account for the multi-faceted nature of smoking lapse behavior to train and evaluate a machine learning model capable of estimating composite risk scores in the natural environment. We first develop mRisk, which combines the effects of various mHealth biomarkers such as stress, physical activity, and location history in producing the risk of smoking lapse using sequential deep neural networks. We propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of smoking lapse. To circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by self-reports), we propose a new loss function to accurately optimize the models. We build the mRisk models using biomarker (stress, physical activity) streams derived from chest-worn sensors. Adapting the models to work with less invasive and more convenient wrist-based sensors requires adapting the biomarker detection models to work with wrist-worn sensor data. To that end, we develop robust stress and activity inference methodologies from noisy wrist-sensor data. We first propose CQP, which quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP within the inference pipeline improves accuracy-yield trade-offs associated with stress detection from wrist-worn PPG sensors in the natural environment. mRisk also requires sensor-based precise detection of smoking events and confirmation through self-reports to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking detection model that is robust to the variations in sensor data resulting from orientation switches in the field. We train the proposed mRisk risk estimation models using the wrist-based inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate the delivery of intelligent smoking interventions to at-risk participants as informed by the composite risk scores. Our results demonstrate the envisaged impact of machine learning-based models operating on wrist-worn wearable sensor data to output continuous smoking lapse risk scores. The novel methodologies we propose throughout this dissertation help instigate a new frontier in smoking research that can potentially improve the smoking abstinence rate in participants willing to quit

    A novel behavioural paradigm for characterising anticipatory postural adjustments in mice

    Get PDF
    Daily we use purposeful, voluntary movements to interact with our environment. These movements demand and cause our body to experience a weight redistribution, i.e., anticipatory postural adjustments (APAs), and it’s the appropriate employment of these APAs that allows us to complete said voluntary movements without falling over or losing our equilibrium. The literature suggests that for humans, monkeys, and several quadrupeds, APAs are crucial at initiation and during movement. However, research has been somewhat limited due to the lack of behavioural paradigms that would allow for a better understanding into the neural circuitry involved with APAs. Given the widespread availability of genetic tools and advanced viral techniques in mice I focused my efforts in developing a novel behavioral paradigm for this species. The first chapters detail the reasoning behind the development of this novel behavioural paradigm while also providing a complete description of the different components and their functions. Later chapters use the custom-designed setup to characterise mouse APAs, incorporating various recording approaches designed to quantify APAs and compare them to those described in prior work, highlighting possible interspecifies similarities and differences. Additionally, I briefly discuss the potential neural circuitry of APAs informed by my own data and research that has been done in different animals, providing a comprehensive overview of APAs in mice

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Autonomous Radar-based Gait Monitoring System

    Get PDF
    Features related to gait are fundamental metrics of human motion [1]. Human gait has been shown to be a valuable and feasible clinical marker to determine the risk of physical and mental functional decline [2], [3]. Technologies that detect changes in people’s gait patterns, especially older adults, could support the detection, evaluation, and monitoring of parameters related to changes in mobility, cognition, and frailty. Gait assessment has the potential to be leveraged as a clinical measurement as it is not limited to a specific health care discipline and is a consistent and sensitive test [4]. A wireless technology that uses electromagnetic waves (i.e., radar) to continually measure gait parameters at home or in a hospital without a clinician’s participation has been proposed as a suitable solution [3], [5]. This approach is based on the interaction between electromagnetic waves with humans and how their bodies impact the surrounding and scattered wireless signals. Since this approach uses wireless waves, people do not need to wear or carry a device on their bodies. Additionally, an electromagnetic wave wireless sensor has no privacy issues because there is no video-based camera. This thesis presents the design and testing of a radar-based contactless system that can monitor people’s gait patterns and recognize their activities in a range of indoor environments frequently and accurately. In this thesis, the use of commercially available radars for gait monitoring is investigated, which offers opportunities to implement unobtrusive and contactless gait monitoring and activity recognition. A novel fast and easy-to-implement gait extraction algorithm that enables an individual’s spatiotemporal gait parameter extraction at each gait cycle using a single FMCW (Frequency Modulated Continuous Wave) radar is proposed. The proposed system detects changes in gait that may be the signs of changes in mobility, cognition, and frailty, particularly for older adults in individual’s homes, retirement homes and long-term care facilities retirement homes. One of the straightforward applications for gait monitoring using radars is in corridors and hallways, which are commonly available in most residential homes, retirement, and long-term care homes. However, walls in the hallway have a strong “clutter” impact, creating multipath due to the wide beam of commercially available radar antennas. The multipath reflections could result in an inaccurate gait measurement because gait extraction algorithms employ the assumption that the maximum reflected signals come from the torso of the walking person (rather than indirect reflections or multipath) [6]. To address the challenges of hallway gait monitoring, two approaches were used: (1) a novel signal processing method and (2) modifying the radar antenna using a hyperbolic lens. For the first approach, a novel algorithm based on radar signal processing, unsupervised learning, and a subject detection, association and tracking method is proposed. This proposed algorithm could be paired with any type of multiple-input multiple-output (MIMO) or single-input multiple-output (SIMO) FMCW radar to capture human gait in a highly cluttered environment without needing radar antenna alteration. The algorithm functionality was validated by capturing spatiotemporal gait values (e.g., speed, step points, step time, step length, and step count) of people walking in a hallway. The preliminary results demonstrate the promising potential of the algorithm to accurately monitor gait in hallways, which increases opportunities for its applications in institutional and home environments. For the second approach, an in-package hyperbola-based lens antenna was designed that can be integrated with a radar module package empowered by the fast and easy-to-implement gait extraction method. The system functionality was successfully validated by capturing the spatiotemporal gait values of people walking in a hallway filled with metallic cabinets. The results achieved in this work pave the way to explore the use of stand-alone radar-based sensors in long hallways for day-to-day long-term monitoring of gait parameters of older adults or other populations. The possibility of the coexistence of multiple walking subjects is high, especially in long-term care facilities where other people, including older adults, might need assistance during walking. GaitRite and wearables are not able to assess multiple people’s gait at the same time using only one device [7], [8]. In this thesis, a novel radar-based algorithm is proposed that is capable of tracking multiple people or extracting walking speed of a participant with the coexistence of other people. To address the problem of tracking and monitoring multiple walking people in a cluttered environment, a novel iterative framework based on unsupervised learning and advanced signal processing was developed and tested to analyze the reflected radio signals and extract walking movements and trajectories in a hallway environment. Advanced algorithms were developed to remove multipath effects or ghosts created due to the interaction between walking subjects and stationary objects, to identify and separate reflected signals of two participants walking at a close distance, and to track multiple subjects over time. This method allows the extraction of walking speed in multiple closely-spaced subjects simultaneously, which is distinct from previous approaches where the speed of only one subject was obtained. The proposed multiple-people gait monitoring was assessed with 22 participants who participated in a bedrest (BR) study conducted at McGill University Health Centre (MUHC). The system functionality also was assessed for in-home applications. In this regard, a cloud-based system is proposed for non-contact, real-time recognition and monitoring of physical activities and walking periods within a domestic environment. The proposed system employs standalone Internet of Things (IoT)-based millimeter wave radar devices and deep learning models to enable autonomous, free-living activity recognition and gait analysis. Range-Doppler maps generated from a dataset of real-life in-home activities are used to train deep learning models. The performance of several deep learning models was evaluated based on accuracy and prediction time, with the gated recurrent network (GRU) model selected for real-time deployment due to its balance of speed and accuracy compared to 2D Convolutional Neural Network Long Short-Term Memory (2D-CNNLSTM) and Long Short-Term Memory (LSTM) models. In addition to recognizing and differentiating various activities and walking periods, the system also records the subject’s activity level over time, washroom use frequency, sleep/sedentary/active/out-of-home durations, current state, and gait parameters. Importantly, the system maintains privacy by not requiring the subject to wear or carry any additional devices

    Analysing the Movement and Behaviour of Housed Dairy Cows

    Get PDF
    Cows in modern dairy systems are at risk of comprised health and welfare, and monitoring changes in behaviour can help identify early-warning signs. This thesis uses a local positioning system to detect changes in group-level behaviour. The proximity interaction network structure and consistency of a herd housed in a closed barn on a commercial farm in Essex is explored. Next, the network structure, alongside group-level space-use patterns, on the commercial farm in Essex are compared to those of a second dairy cow herd housed in an open barn (RVC Research farm). In the subsequent chapters, the relationship between barn temperature and bunching behaviour, a potentially maladaptive response to warmer than average temperatures, was investigated in both herds, through various bunching metrics: range size, inter-cow distance and nearest neighbour distance. The herd on the commercial farm in Essex was highly connected and temporally unstable, with inter-individual variation in interactions in the non-feeding zone, and social differentiation across functional zones. No social assortment by parity, days in milk or lameness state was detected. The herd on the RVC Research farm were less connected than the herd on the commercial farm in Essex. Inter-individual variation in proximity interactions was found in the feeding zoneof the RVC Research farm, alongside social differentiation across functional zones. Cows showed preferences for specific areas of the non-feeding zones, more so on the commercial farm in Essex than on the RVC Research farm. Cows increased their bunching behaviour ≥ 20°C in terms of all bunching metrics on the commercial farm in Essex. This pattern was observed for nearest neighbour distance on the RVC Research farm ≥ 15.91°C. This thesis demonstrates the use of precision livestock farming to monitor changes in group-level behaviour to improve the health and welfare of livestock
    • …
    corecore