1,563,412 research outputs found

    Improved estimators for dispersion models with dispersion covariates

    Full text link
    In this paper we discuss improved estimators for the regression and the dispersion parameters in an extended class of dispersion models (J{\o}rgensen, 1996). This class extends the regular dispersion models by letting the dispersion parameter vary throughout the observations, and contains the dispersion models as particular case. General formulae for the second-order bias are obtained explicitly in dispersion models with dispersion covariates, which generalize previous results by Botter and Cordeiro (1998), Cordeiro and McCullagh (1991), Cordeiro and Vasconcellos (1999), and Paula (1992). The practical use of the formulae is that we can derive closed-form expressions for the second-order biases of the maximum likelihood estimators of the regression and dispersion parameters when the information matrix has a closed-form. Various expressions for the second-order biases are given for special models. The formulae have advantages for numerical purposes because they require only a supplementary weighted linear regression. We also compare these bias-corrected estimators with two different estimators which are also bias-free to the second-order that are based on bootstrap methods. These estimators are compared by simulation

    Parabolic pulse generation with active or passive dispersion decreasing optical fibers

    Get PDF
    We experimentally demonstrate the possibility to generate parabolic pulses via a single dispersion decreasing optical fiber with normal dispersion. We numerically and experimentally investigate the influence of the dispersion profile, and we show that a hybrid configuration combining dispersion decrease and gain has several benefits on the parabolic generated pulses

    Dispersion Interactions between Optically Anisotropic Cylinders at all Separations: Retardation Effects for Insulating and Semiconducting Single Wall Carbon Nanotubes

    Full text link
    We derive the complete form of the van der Waals dispersion interaction between two infinitely long anisotropic semiconducting/insulating thin cylinders at all separations. The derivation is based on the general theory of dispersion interactions between anisotropic media as formulated in [J. N. Munday, D. Iannuzzi, Yu. S. Barash and F. Capasso, {\sl Phys. Rev. A} {\bf 71}, 042102 (2005)]. This formulation is then used to calculate the dispersion interactions between a pair of single walled carbon nanotubes at all separations and all angles. Non-retarded and retarded forms of the interactions are developed separately. The possibility of repulsive dispersion interactions and non-monotonic dispersion interactions is discussed within the framework of the new formulation

    Analysis of terahertz generation using tilted-pulse-fronts

    Full text link
    A 2-D spatio-temporal analysis of terahertz generation by optical rectification of tilted-pulse-fronts is presented. Closed form expressions of terahertz transients and spectra in two spatial dimensions are furnished in the undepleted limit. Importantly, the analysis incorporates spatio-temporal distortions of the optical pump pulse such as angular dispersion, group-velocity dispersion due to angular dispersion, spatial and temporal chirp as well as beam curvature. The importance of the radius of curvature to the tilt-angle and group-velocity dispersion due to angular dispersion to terahertz frequency, conversion efficiency and peak field is revealed.In particular, the deterioration of terahertz frequency, efficiency and field at large pump bandwidths and beam sizes is analytically shown

    Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal

    Full text link
    To elucidate the relationship between a crystal's structure, its thermal conductivity, and its phonon dispersion characteristics, an analysis is conducted on layered diatomic Lennard-Jones crystals with various mass ratios. Lattice dynamics theory and molecular dynamics simulations are used to predict the phonon dispersion curves and the thermal conductivity. The layered structure generates directionally dependent thermal conductivities lower than those predicted by density trends alone. The dispersion characteristics are quantified using a set of novel band diagram metrics, which are used to assess the contributions of acoustic phonons and optical phonons to the thermal conductivity. The thermal conductivity increases as the extent of the acoustic modes increases, and decreases as the extent of the stop bands increases. The sensitivity of the thermal conductivity to the band diagram metrics is highest at low temperatures, where there is less anharmonic scattering, indicating that dispersion plays a more prominent role in thermal transport in that regime. We propose that the dispersion metrics (i) provide an indirect measure of the relative contributions of dispersion and anharmonic scattering to the thermal transport, and (ii) uncouple the standard thermal conductivity structure-property relation to that of structure-dispersion and dispersion-property relations, providing opportunities for better understanding of the underlying physical mechanisms and a potential tool for material design.Comment: 30 pages, 10 figure
    corecore