6,070 research outputs found

    Interpreting and using CPDAGs with background knowledge

    Full text link
    We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge orientations. Although maximal PDAGs often arise in practice, causal methods have been mostly developed for CPDAGs. In this paper, we extend such methodology to maximal PDAGs. In particular, we develop methodology to read off possible ancestral relationships, we introduce a graphical criterion for covariate adjustment to estimate total causal effects, and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of possible causal effects. We also present a simulation study that illustrates the gain in identifiability of total causal effects as the background knowledge increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201

    Packing odd TT-joins with at most two terminals

    Get PDF
    Take a graph GG, an edge subset ΣE(G)\Sigma\subseteq E(G), and a set of terminals TV(G)T\subseteq V(G) where T|T| is even. The triple (G,Σ,T)(G,\Sigma,T) is called a signed graft. A TT-join is odd if it contains an odd number of edges from Σ\Sigma. Let ν\nu be the maximum number of edge-disjoint odd TT-joins. A signature is a set of the form Σδ(U)\Sigma\triangle \delta(U) where UV(G)U\subseteq V(G) and UT)|U\cap T) is even. Let τ\tau be the minimum cardinality a TT-cut or a signature can achieve. Then ντ\nu\leq \tau and we say that (G,Σ,T)(G,\Sigma,T) packs if equality holds here. We prove that (G,Σ,T)(G,\Sigma,T) packs if the signed graft is Eulerian and it excludes two special non-packing minors. Our result confirms the Cycling Conjecture for the class of clutters of odd TT-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing TT-joins with at most four terminals, and a new result on covering edges with cuts.Comment: extended abstract appeared in IPCO 2014 (under the different title "the cycling property for the clutter of odd st-walks"

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    CCL: a portable and tunable collective communication library for scalable parallel computers

    Get PDF
    A collective communication library for parallel computers includes frequently used operations such as broadcast, reduce, scatter, gather, concatenate, synchronize, and shift. Such a library provides users with a convenient programming interface, efficient communication operations, and the advantage of portability. A library of this nature, the Collective Communication Library (CCL), intended for the line of scalable parallel computer products by IBM, has been designed. CCL is part of the parallel application programming interface of the recently announced IBM 9076 Scalable POWERparallel System 1 (SP1). In this paper, we examine several issues related to the functionality, correctness, and performance of a portable collective communication library while focusing on three novel aspects in the design and implementation of CCL: 1) the introduction of process groups, 2) the definition of semantics that ensures correctness, and 3) the design of new and tunable algorithms based on a realistic point-to-point communication model

    Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs

    Full text link
    We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide new soundness and completeness proofs for the adjustment criterion for DAGs.Comment: 58 pages, 12 figures, to appear in JML
    corecore