6,868 research outputs found

    Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees

    Full text link
    Given a graph G=(V,E)G = (V, E), we wish to compute a spanning tree whose maximum vertex degree, i.e. tree degree, is as small as possible. Computing the exact optimal solution is known to be NP-hard, since it generalizes the Hamiltonian path problem. For the approximation version of this problem, a O~(mn)\tilde{O}(mn) time algorithm that computes a spanning tree of degree at most Δ+1\Delta^* +1 is previously known [F\"urer \& Raghavachari 1994]; here Δ\Delta^* denotes the minimum tree degree of all the spanning trees. In this paper we give the first near-linear time approximation algorithm for this problem. Specifically speaking, we propose an O~(1ϵ7m)\tilde{O}(\frac{1}{\epsilon^7}m) time algorithm that computes a spanning tree with tree degree (1+ϵ)Δ+O(1ϵ2logn)(1+\epsilon)\Delta^* + O(\frac{1}{\epsilon^2}\log n) for any constant ϵ(0,16)\epsilon \in (0,\frac{1}{6}). Thus, when Δ=ω(logn)\Delta^*=\omega(\log n), we can achieve approximate solutions with constant approximate ratio arbitrarily close to 1 in near-linear time.Comment: 17 page

    The cavity approach for Steiner trees packing problems

    Full text link
    The Belief Propagation approximation, or cavity method, has been recently applied to several combinatorial optimization problems in its zero-temperature implementation, the max-sum algorithm. In particular, recent developments to solve the edge-disjoint paths problem and the prize-collecting Steiner tree problem on graphs have shown remarkable results for several classes of graphs and for benchmark instances. Here we propose a generalization of these techniques for two variants of the Steiner trees packing problem where multiple "interacting" trees have to be sought within a given graph. Depending on the interaction among trees we distinguish the vertex-disjoint Steiner trees problem, where trees cannot share nodes, from the edge-disjoint Steiner trees problem, where edges cannot be shared by trees but nodes can be members of multiple trees. Several practical problems of huge interest in network design can be mapped into these two variants, for instance, the physical design of Very Large Scale Integration (VLSI) chips. The formalism described here relies on two components edge-variables that allows us to formulate a massage-passing algorithm for the V-DStP and two algorithms for the E-DStP differing in the scaling of the computational time with respect to some relevant parameters. We will show that one of the two formalisms used for the edge-disjoint variant allow us to map the max-sum update equations into a weighted maximum matching problem over proper bipartite graphs. We developed a heuristic procedure based on the max-sum equations that shows excellent performance in synthetic networks (in particular outperforming standard multi-step greedy procedures by large margins) and on large benchmark instances of VLSI for which the optimal solution is known, on which the algorithm found the optimum in two cases and the gap to optimality was never larger than 4 %

    Approximating the Smallest Spanning Subgraph for 2-Edge-Connectivity in Directed Graphs

    Full text link
    Let GG be a strongly connected directed graph. We consider the following three problems, where we wish to compute the smallest strongly connected spanning subgraph of GG that maintains respectively: the 22-edge-connected blocks of GG (\textsf{2EC-B}); the 22-edge-connected components of GG (\textsf{2EC-C}); both the 22-edge-connected blocks and the 22-edge-connected components of GG (\textsf{2EC-B-C}). All three problems are NP-hard, and thus we are interested in efficient approximation algorithms. For \textsf{2EC-C} we can obtain a 3/23/2-approximation by combining previously known results. For \textsf{2EC-B} and \textsf{2EC-B-C}, we present new 44-approximation algorithms that run in linear time. We also propose various heuristics to improve the size of the computed subgraphs in practice, and conduct a thorough experimental study to assess their merits in practical scenarios
    corecore