332 research outputs found

    On Hamilton decompositions of infinite circulant graphs

    Get PDF
    The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge-disjoint two-way-infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k-valent connected circulant graph has a decomposition into k edge-disjoint Hamilton cycles. We settle the problem of decomposing 2k-valent infinite circulant graphs into k edge-disjoint two-way-infinite Hamilton paths for k=2, in many cases when k=3, and in many other cases including where the connection set is ±{1,2,...,k} or ±{1,2,...,k - 1, 1,2,...,k + 1}

    Generalizations of tournaments: A survey

    Get PDF

    On the causal interpretation of acyclic mixed graphs under multivariate normality

    Full text link
    In multivariate statistics, acyclic mixed graphs with directed and bidirected edges are widely used for compact representation of dependence structures that can arise in the presence of hidden (i.e., latent or unobserved) variables. Indeed, under multivariate normality, every mixed graph corresponds to a set of covariance matrices that contains as a full-dimensional subset the covariance matrices associated with a causally interpretable acyclic digraph. This digraph generally has some of its nodes corresponding to hidden variables. We seek to clarify for which mixed graphs there exists an acyclic digraph whose hidden variable model coincides with the mixed graph model. Restricting to the tractable setting of chain graphs and multivariate normality, we show that decomposability of the bidirected part of the chain graph is necessary and sufficient for equality between the mixed graph model and some hidden variable model given by an acyclic digraph
    • …
    corecore